导数大于零和单调递增是充要条件吗?
不是。
根据导数定义:函数f(x)在x0附近有进有定义,(x0处可能没有定义,严格的说,存在ε>0,存在x,满足{x|0<|x-x0|<ε}包含于f(x)定义域)极限lim_{Δx→0} [f(x0+Δx)-f(x0)]/Δx存在(设它等于A),则A就是函数f(x)在x0点处的导数.当然,对于x0∈D(设D为f(x)的定义域),存在唯一的A与之对应.故得到函数φ(x)=lim_{Δx→0} [f(x+Δx)-f(x)]/Δx.φ(x)便是f(x)的导函数,记作f'(x)。
那么导数大于零,可以推出函数在定义域内单调递增,但是单调递增不能推出导数的值大于零。
因为函数可导要求原函数在定义域内连续,如果不连续就不能推出函数的导数。
比如说单调增的点函数。
所以导数大于零是函数单调递增的充分不必要条件。
拓展资料:
导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
参考资料:导数——百度百科
不是
前提是要函数在定义域内连续可导
导数大于零,可以推出函数在定义域上单调递增。
但是函数单调递增并不可以推出导数大于零,
因为导数要求原函数是在定义域上为连续的函数,如果你的函数为递增的点函数,就不可以推出导数大于零。
所以导数大于零是函数单调递增的充分不必要条件
例如f(x)=x,x∈整数
则f(x)是单调递增函数,但f(x)处处不可导
拓展资料
一般地,设一连续函数 f(x) 的定义域为D,则
如果对于属于定义域D内某个区间上的任意两个自变量的值x1,x2∈D且x1>x2,都有f(x1) >f(x2),即在D上具有单调性且单调增加,那么就说f(x) 在这个区间上是增函数。
相反地,如果对于属于定义域D内某个区间上的任意两个自变量的值x1,x2∈D且x1>x2,都有f(x1) <f(x2),即在D上具有单调性且单调减少,那么就说 f(x) 在这个区间上是减函数。
则增函数和减函数统称单调函数。
导数大于零,可以推出函数在定义域上单调递增。
但是函数单调递增并不可以推出导数大于零,
因为导数要求原函数是在定义域上为连续的函数,如果你的函数为递增的点函数,就不可以推出导数大于零。
所以导数大于零是函数单调递增的充分不必要条件
根据导数定义:函数f(x)在x0附近有进有定义,(x0处可能没有定义,严格的说,存在ε>0,存在x,满足{x|0<|x-x0|<ε}包含于f(x)定义域)极限lim_{Δx→0}
[f(x0+Δx)-f(x0)]/Δx存在(设它等于A),则A就是函数f(x)在x0点处的导数.当然,对于x0∈D(设D为f(x)的定义域),存在唯一的A与之对应.故得到函数φ(x)=lim_{Δx→0}
[f(x+Δx)-f(x)]/Δx.φ(x)便是f(x)的导函数,记作f'(x)。
那么导数大于零,可以推出函数在定义域内单调递增,但是单调递增不能推出导数的值大于零。
因为函数可导要求原函数在定义域内连续,如果不连续就不能推出函数的导数。
比如说单调增的点函数。
所以导数大于零是函数单调递增的充分不必要条件。
拓展资料:
导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
参考资料:导数——百度百科