3个回答
展开全部
令u=x^2,则du=2xdx,∫xln(1+x^2)dx=(1/2)∫ln(1+u)du,然后用分步积分就行了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫xln(1+x^2)dx
=1/2∫ln(1+x^2)dx^2
=1/2∫ln(1+x^2)d(1+x^2)
=1/2(1+x^2)ln(1+x^2)-1/2∫(1+x^2)dln(1+x^2)
=1/2(1+x^2)ln(1+x^2)-1/2∫(1+x^2)*1/(1+x^2)d(1+x^2)
=1/2(1+x^2)ln(1+x^2)-1/2∫dx^2
=1/2(1+x^2)ln(1+x^2)-1/2x^2+C
=1/2∫ln(1+x^2)dx^2
=1/2∫ln(1+x^2)d(1+x^2)
=1/2(1+x^2)ln(1+x^2)-1/2∫(1+x^2)dln(1+x^2)
=1/2(1+x^2)ln(1+x^2)-1/2∫(1+x^2)*1/(1+x^2)d(1+x^2)
=1/2(1+x^2)ln(1+x^2)-1/2∫dx^2
=1/2(1+x^2)ln(1+x^2)-1/2x^2+C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2009-11-13
展开全部
∫xln(1+x^2)dx=∫1/2*ln(1+x^2)d(x^2+1)=1/2*(x^2+1)*(ln(x^2+1)-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询