一道导数题求教

题目是:设函数f(x)在【a,b】上连续,在(a,b)上可导,证明在(a,b)内至少存在一点m,使f'(m)=【f(m)-f(a)】/b-m分析说:要证明(b-m)f'(... 题目是:设函数f(x)在【a,b】上连续,在(a,b)上可导,证明在(a,b)内至少存在一点m,使f'(m)=【f(m)-f(a)】/b-m

分析说:要证明(b-m)f'(m)-【f(m)-f(a)}】=0即要证明{(b-x)【f(x)-f(a)】'+(b-x)'【f(x)-f(a)】}={(b-x)【f(x)-f(a)】}'=0
这是为什么呢?为什么要证明题设就是要证明那个呢?
展开
caolufengyun
2009-11-16
知道答主
回答量:3
采纳率:0%
帮助的人:0
展开全部
分析很好,一种新的解题方法。不过这道题不必用这样的方法,这样想也没什么意义,这道题的本质只是为了理解导数,结合图像,很容易发现这个规律。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式