已知过点A(0,1),且方向向量为a=(1,k)的直线l与圆C:(x-2)^2+(y-3)^2=1.

已知过点A(0,1),且方向向量为a=(1,k)的直线l与圆C:(x-2)^2+(y-3)^2=1.相交与M,N两点,(1)求证向量AM*向量AN=定值(2)若O为坐标原... 已知过点A(0,1),且方向向量为a=(1,k)的直线l与圆C:(x-2)^2+(y-3)^2=1.相交与M,N两点,(1)求证向量AM*向量AN=定值(2)若O为坐标原点,且向量OM*向量ON=12.求k的值 展开
玩玩玩玩38
2013-08-06
知道答主
回答量:4
采纳率:0%
帮助的人:4.6万
展开全部
1.只要求出在极限情况,即相切时K的值为多少即可
可设直线l的方程为y=kx+1,与圆的方程联立得
K=(4-√7)/3或K=(4+√7)/3
所以,(4-√7)/3<K<(4+√7)/3
2.AMN是圆O的割线,依据切割线定理,AM*AN=切线长的平方=7
3.依据第一问所设的直线方程,可以设M点的坐标为(x1,
kx1+1),N点坐标为(x2,kx2+1),分别代入圆的方程可得
(k^2+1)x1^2-(4k+4)x1+7=0
(k^2+1)x2^2-(4k+4)x2+7=0
可知x1、x2是方程(k^2+1)x^2-(4k+4)x+7=0的两个根
所以,x1+x2=(4k+4)/(k^2+1),x1*x2=7/(k^2+1)
由于OM*ON=12,即x1*x2+(kx1+1)*(kx2+1)=
(k^2+1)x1*x2+k(x1+x2)+1=12
代入,得k=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式