大一高数题(洛必达法则)

解:lim(x趋于0)[(1+x)^(1/x)-e]/x... 解:lim(x趋于0)[(1+x)^(1/x)-e]/x 展开
低调hjs
推荐于2017-09-27 · TA获得超过338个赞
知道小有建树答主
回答量:86
采纳率:0%
帮助的人:0
展开全部
把(1+x)^(1/x)化成e^ln[(1+x)^(1/x)]=e^[(1/x)*ln(1+x)]
则原式分子为e*(e^[(1/x)*ln(1+x)-1]-1)∽e*[(1/x)*ln(1+x)-1]
上面用了等价无穷小代换

lim(x趋于0)[(1+x)^(1/x)-e]/x=e*lim(x趋于0)[(1/x)*ln(1+x)-1]/x
=e*lim(x趋于0)[ln(1+x)-x]/x^2
洛必达法则[1/(1+x)-1]/2x=1/2(1+x)
原式极限为e/2
damivsfifa
2009-11-23 · TA获得超过280个赞
知道小有建树答主
回答量:78
采纳率:0%
帮助的人:128万
展开全部
使用洛必达法则,必须观察极限是否属于0/0型,Inf/Inf型,或者通过变换能将原极限化为0/0型,Inf/Inf型,
对于此题,应该属于0/0型,直接对分子分母关于x求导,
lim(x趋于0)[(1+x)^(1/x)-e]/x
(对于分子求导,得先将其取对数e^(ln(分子),分母求导为1)
=lim(x趋于0)((e^(ln(1+x)/x))*(x/(1+x)-ln(1+x))/(x^2)
(lim(x趋于0)e^(ln(1+x)/x)=e)
=lim(x趋于0)e*(x/(1+x)-ln(1+x))/(x^2)
(后面部分仍然满足0/0型,继续用洛比达法则,关于分子分母求导)
=lim(x趋于0)e*((1+x-x)/(1+x)^2-1/(1+x))/(2*x)
(化简)
=lim(x趋于0)e*(-0.5/(1+x)^2)
=-0.5e
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友48b1165
2009-11-30 · 超过20用户采纳过TA的回答
知道答主
回答量:75
采纳率:0%
帮助的人:56.3万
展开全部
一楼错误,2楼方法正确,见到指数减e,一定要联想到提取e转化为e^x-1~x。不过2楼最后这步化简错了“[1/(1+x)-1]/2x=1/2(1+x)”少了一个负号,三楼方法不推荐,不过您要是对自己的计算能力比较有把握也没什么的,考试的时候时间紧想不到别的方法直接算也Ok,不过考研的题目经常是不化简或者等价代换就会越罗比达越复杂,因此最好还是平时多锻炼发现等价代换的能力。泰勒我一直不会搞。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
宁波祝老师
2009-11-23 · TA获得超过849个赞
知道小有建树答主
回答量:455
采纳率:100%
帮助的人:295万
展开全部
极限肯定是负的,(1+x)^(1/x)是递增函数,极限是e
2楼那里不能用无穷小代换的,加减法不行,乘除可以
算了下,跟三楼过程差不多,是-e/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
08720103
2009-11-24 · TA获得超过1681个赞
知道小有建树答主
回答量:287
采纳率:100%
帮助的人:157万
展开全部
最后结果是-e/2 ,本人用了积分中值定理并结合泰勒公式做了,也挺简单的,就不打了!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式