如图,四边形ABCD中,AB=CD,M,N分别是AD,BC的中点,延长BA,NM,CD分别交于点E,F,试说明角BEN=角NFC
2个回答
2009-12-02
展开全部
连接AC,取AC的中点P,连接PM,PN
因为 M是AD的中点,P是AC的中点
所以 PM是三角形ACD的中位线
所以 PM//CD,PM=1/2CD
所以 角PMN=角NFC
同理 PN//AB,PN=1/2AB
所以 角PNM=角BEN
因为 AB=CD,PM=1/2CD,PN=1/2AB
所以 PM=PN
所以 角PMN=角PNM
因为 角PMN=角NFC,角PNM=角BEN
所以 角BEN=角NFC
因为 M是AD的中点,P是AC的中点
所以 PM是三角形ACD的中位线
所以 PM//CD,PM=1/2CD
所以 角PMN=角NFC
同理 PN//AB,PN=1/2AB
所以 角PNM=角BEN
因为 AB=CD,PM=1/2CD,PN=1/2AB
所以 PM=PN
所以 角PMN=角PNM
因为 角PMN=角NFC,角PNM=角BEN
所以 角BEN=角NFC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询