如图5,在角ABC中,AC=8,BC=6,AD垂直BC于点D,AD=5,BE垂直AC于点E,求BE的长 5

如图5,在角ABC中,AC=8,BC=6,AD垂直BC于点D,AD=5,BE垂直AC于点E,求BE的长... 如图5,在角ABC中,AC=8,BC=6,AD垂直BC于点D,AD=5,BE垂直AC于点E,求BE的长 展开
百度网友966a81f
2009-11-24 · 超过12用户采纳过TA的回答
知道答主
回答量:34
采纳率:0%
帮助的人:20万
展开全部
没看见图哦
是钝角三角形不
△CBE∽△CAD
CB/CA=BE/AD
6/8=BE/5
所以BE=4
这根据三角形相似解决哦,做几何题你最好要把图形画出来哦,很方便与解题啦。然后你就找要求的边,(△CBE∽△CAD这些字母里)观察边与边如何比。不用纠结图形啦。关键找字母对应就行。可是找字母对应的基本条件是什么呢?就是这些字母的顺序你要弄清楚。相等的角(或者相同的角)你要写一样顺序哦。就像这里的∠C是两个三角形共同的,就都写第一位。然后两个都是直角三角形,就一定还有相等的等于90°的角。这里∠D和∠BEC是直角都等于90°哦,所以D和E位置是对应的。不过,其实只要你找的角是相等的,对应排了,位置怎么放没关系哦。
意乱情迷柳下惠
2009-11-24 · TA获得超过4603个赞
知道小有建树答主
回答量:1352
采纳率:79%
帮助的人:844万
展开全部
分析:思路1:已知三条线段长,求一条线段长。往往利用相似构成比例线段,本题就是通过证两个三角形相似来解决。思路2:解决有垂直关系的线段问题常常考虑面积证法
解:方法1:因为AD垂直于BC,BE垂直于AC,所以∠ADC= ∠BEC=90度,因为∠C是公共角,所以△BEC相似于△ADC,所以BE/AD=BC/AC,可以求出BE=30/8=15/4.
方法2:可以利用面积。因为S△ABC=AD*BC/2=AC*BE/2,所以AD*BC=AC*BE,同样可以求出。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友66f7b6a
2009-11-24 · TA获得超过1.4万个赞
知道大有可为答主
回答量:1731
采纳率:0%
帮助的人:2596万
展开全部
S△ABC=AD×BC/2=AC×BE/2
5×6 = 8×BE
所以BE = 15/4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
进清安厍月
2019-02-14 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:25%
帮助的人:1124万
展开全部
s三角形abc=ac*be/2=bc*ad/2
be=bc*ad/ac=6*5/8=15/4.[4分之15]
满意的话请及时点下【采纳答案】o(∩_∩)o
谢谢哈~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式