设随机变量X服从参数为1/2的指数分布,证明:Y=1-e^-2x服从[0,1]上的均匀分布。

我想要详细的证明过程,谢谢啦~~... 我想要详细的证明过程,谢谢啦~~ 展开
 我来答
617327171
2013-10-09 · TA获得超过1126个赞
知道答主
回答量:82
采纳率:100%
帮助的人:34.7万
展开全部
利用分布函数法,假设Y的分布函数为F(y),则根据分布函数的定义可知
F(y)=P(Y<=y)=P(1-eˆ(-2X)<=y),由于x服从参数为1/2的指数分布,因此X可能的取值范围应该是0到正无穷。因此1-eˆ(-2X)可能的取值范围应该是[0,1]。可知当y<0时,P(1-eˆ(-2X)<=y)=0,当y>=1时,P(1-eˆ(-2X)<=y)=1。当0<=y<1时,P(1-eˆ(-2X)<=y)=P(X<=1/2ln(1-y))=y。
可知Y的分布函数即为区间(0,1)上的均匀分布的分布函数,也即Y服从均匀分布。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2021-11-20 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1645万
展开全部

简单计算一下即可,详情如图所示

备注

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式