两道高一立体几何的数学题,帮帮忙解决一下,有悬赏!!

1.在正方体AC¹中,E为AB¹上一点,F在BD上,且B¹E=BF。求证:EF‖面BB¹C¹C(没有图,根据文字自己画的... 1.在正方体AC¹中,E为AB¹上一点,F在BD上,且B¹E=BF。求证:EF‖ 面BB¹C¹C (没有图,根据文字自己画的)

2.三棱锥A-BCD被平面所截,截面为平行四边形EFGH。求证:CD‖面EFGH
(一样,也没图)
还有一个:
3. 已知E,F,G,H,顺次喂空间四边形,四条边AB,BC,CD,DA的中点,且EG=3,FH=4,求AC²+BD²= ________
展开
草刺猬_SP
2009-11-26 · TA获得超过2077个赞
知道小有建树答主
回答量:190
采纳率:0%
帮助的人:311万
展开全部
1、
令F1在B1D1上,且B1F1=BF
考察△AB1D1,显然AB1=B1D1
因为B1E=B1F1,且∠AB1D1=∠EB1F1,所以△EB1F1∽△AB1D1
所以同位角相等,EF1‖AD1
又显然AD1‖面BB1C1C,所以EF1‖面BB1C1C
显然BD‖B1D1,即BF‖B1F1,又B1F1=BF,所以BFF1B1是平行四边形,
FF1‖BB1,所以FF1‖面BB1C1C,
△EFF1‖面BB1C1C,所以EF‖面BB1C1C

2、这道题似乎和怎么截是有关的……

3、结果为50
即使在空间中中位线也可以用,得到EFGH为平行四边形,且EF=AC/2,FG=BD/2,
记得没错的话平行四边形对角线平方和等于二倍的相邻两边平方和也是定理
就是说AC²+BD²=4EF²+4FG²=2(2EF²+2FG²)=2(EG²+FH²)=2(3²+4²)=50
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式