
展开全部
先利用向量的加法将向量BD
转化成
BD
=
BA
+
AC
+
CD
,等式两边进行平方,求出向量
BD
的模即可.解:∵∠ACD=90°,∴ AC • CD =0.
同理 BA • AC =0.
∵AB和CD成60°角,∴< BA • CD >=60°或120°.
∵ BD = BA + AC + CD ,
∴ BD2 = BA2 + AC2 + CD2 +2 AB • CD=3+2×1×1×cos< BA , CD >
= 4(〈 BA CD 〉=60°) 2(〈 BA CD 〉=120°).
∴| BD |=2或 2 ,即B、D间的距离为2或 2 .
转化成
BD
=
BA
+
AC
+
CD
,等式两边进行平方,求出向量
BD
的模即可.解:∵∠ACD=90°,∴ AC • CD =0.
同理 BA • AC =0.
∵AB和CD成60°角,∴< BA • CD >=60°或120°.
∵ BD = BA + AC + CD ,
∴ BD2 = BA2 + AC2 + CD2 +2 AB • CD=3+2×1×1×cos< BA , CD >
= 4(〈 BA CD 〉=60°) 2(〈 BA CD 〉=120°).
∴| BD |=2或 2 ,即B、D间的距离为2或 2 .
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询