若f(t)是连续函数且为奇函数,证明他的0到x的积分是偶函数。
f(x)=f(-x)为偶函数那么是不是应该证明原函数F(x)=F(-x)?为什么F(x)+F(-x)=∫(-x,x)f(t)dt=0,所以F(x)=∫(0,x)f(t)d...
f(x)=f(-x)为偶函数 那么是不是应该证明原函数F(x)=F(-x)?为什么F(x)+F(-x)=∫(-x,x)f(t)dt=0,所以F(x)=∫(0,x)f(t)dt是偶函数?
展开
2个回答
展开全部
声明:∫(a,b)f(x)dx=F(x)|(a,b)表示f(x)从a到b的定积分,F(x)为原函数之一
设F(x)=∫(0,x)f(t)dt,
F(x)-F(-x)
=∫(0,x)f(t)dt-∫(0,-x)f(t)d(t)(做替换s=-t,积分限相应地跟着变)
=∫(0,x)f(t)dt-∫(0,x)f(-s)d(-s)
=∫(0,x)f(t)dt-∫(0,x)[-f(s)](-ds)
=∫(0,x)f(t)dt-∫(0,x)f(s)ds
=0
所以F(x)=∫(0,x)f(t)dt是偶函数.
设F(x)=∫(0,x)f(t)dt,
F(x)-F(-x)
=∫(0,x)f(t)dt-∫(0,-x)f(t)d(t)(做替换s=-t,积分限相应地跟着变)
=∫(0,x)f(t)dt-∫(0,x)f(-s)d(-s)
=∫(0,x)f(t)dt-∫(0,x)[-f(s)](-ds)
=∫(0,x)f(t)dt-∫(0,x)f(s)ds
=0
所以F(x)=∫(0,x)f(t)dt是偶函数.
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询