若f(t)是连续函数且为奇函数,证明他的0到x的积分是偶函数。

f(x)=f(-x)为偶函数那么是不是应该证明原函数F(x)=F(-x)?为什么F(x)+F(-x)=∫(-x,x)f(t)dt=0,所以F(x)=∫(0,x)f(t)d... f(x)=f(-x)为偶函数 那么是不是应该证明原函数F(x)=F(-x)?为什么F(x)+F(-x)=∫(-x,x)f(t)dt=0,所以F(x)=∫(0,x)f(t)dt是偶函数? 展开
xuwuting
2009-12-02 · TA获得超过6849个赞
知道大有可为答主
回答量:1274
采纳率:0%
帮助的人:1584万
展开全部
声明:∫(a,b)f(x)dx=F(x)|(a,b)表示f(x)从a到b的定积分,F(x)为原函数之一

设F(x)=∫(0,x)f(t)dt,
F(x)-F(-x)
=∫(0,x)f(t)dt-∫(0,-x)f(t)d(t)(做替换s=-t,积分限相应地跟着变)
=∫(0,x)f(t)dt-∫(0,x)f(-s)d(-s)
=∫(0,x)f(t)dt-∫(0,x)[-f(s)](-ds)
=∫(0,x)f(t)dt-∫(0,x)f(s)ds
=0
所以F(x)=∫(0,x)f(t)dt是偶函数.
百度网友0fcefd4
2009-12-02 · TA获得超过1190个赞
知道小有建树答主
回答量:696
采纳率:60%
帮助的人:542万
展开全部
你就用定义证明就行,需要注意的是中间要用一步换元,就是让t=-m,就行了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式