关于等差数列求和公式
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已经很详细了,我就说下等差数列的求和公式的推导。
方法:倒序相加法
Sn=a1+a2+……+an (1)
Sn=an+a(n-1)+……+a1 (2)
(1)+(2)得 2Sn=n(a1+an)
所以 Sn=n(a1+an)/2 (3)
再把通项公式an=a1+(n-1)d代入(3)式可得
Sn=na1+n(n-1)d/2 (4)
(3)和(4)就是等差数列的2个求和公式!
方法:倒序相加法
Sn=a1+a2+……+an (1)
Sn=an+a(n-1)+……+a1 (2)
(1)+(2)得 2Sn=n(a1+an)
所以 Sn=n(a1+an)/2 (3)
再把通项公式an=a1+(n-1)d代入(3)式可得
Sn=na1+n(n-1)d/2 (4)
(3)和(4)就是等差数列的2个求和公式!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
很明显这个等差数列的首项a1=1,公差d=2,则通项是an=2n-1
an=2n-1=999,则n=500,则999是该数列的第500项
根据等差数列求和公式
Sn=a1*n+(n*(n-1))/2
Sn=1*500+(500*(500-1))/2=125250
an=2n-1=999,则n=500,则999是该数列的第500项
根据等差数列求和公式
Sn=a1*n+(n*(n-1))/2
Sn=1*500+(500*(500-1))/2=125250
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
等差数列求和公式 Sn=n(a1+an)/2 或Sn=a1*n+n(n-1)d/2 注:an=a1+(n-1)d
转换过程:Sn=n(a1+an)/2=n{a1+[a1+(n-1)d]}/2=n[2a1+(n-1)d]/2=[2na1+n(n-1)d]/2
应该是对于任一N均成立吧(一定),那么Sn-Sn-1=[n(a1+an)-(n-1)(a1+an-1)]/2=[a1+n*an-(n-1)*an-1]/2= an
化简得(n-1)an-1-(n-2)an=a1,这对于任一N均成立
当n取n-1时式子变为,(n-3)an-1-(n-2)an-2=a1=(n-2)an-(n-1)an-1
得
2(n-2)an-1=(n-2)*(an+an-2)
当n大于2时得2an-1=an+an-2 显然证得它是等差数列
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
性质:
若 m、n、p、q∈N
①若m+n=p+q,则am+an=ap+aq
②若m+n=2q,则am+an=2aq
转换过程:Sn=n(a1+an)/2=n{a1+[a1+(n-1)d]}/2=n[2a1+(n-1)d]/2=[2na1+n(n-1)d]/2
应该是对于任一N均成立吧(一定),那么Sn-Sn-1=[n(a1+an)-(n-1)(a1+an-1)]/2=[a1+n*an-(n-1)*an-1]/2= an
化简得(n-1)an-1-(n-2)an=a1,这对于任一N均成立
当n取n-1时式子变为,(n-3)an-1-(n-2)an-2=a1=(n-2)an-(n-1)an-1
得
2(n-2)an-1=(n-2)*(an+an-2)
当n大于2时得2an-1=an+an-2 显然证得它是等差数列
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
性质:
若 m、n、p、q∈N
①若m+n=p+q,则am+an=ap+aq
②若m+n=2q,则am+an=2aq
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询