设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且bcosC=(2a-c)cosB(1)求B的大小.(2)求sinA+sinC的取值范围

jie... jie 展开
什么都不懂哦
2009-12-05 · TA获得超过215个赞
知道答主
回答量:70
采纳率:0%
帮助的人:98万
展开全部
(1)bcosC=(2a-c)cosB
b(a^2+b^2-c^2)/2ab=(2a-c)(a^2+c^2-b^2)/2ac
ca^2+cb^2-c^3=2a^3+2ac^2-2ab^2-ca^2-c^3+cb^2
ac=a^2+c^2-b^2
cosB=(a^2+c^2-b^2)/2ac=1/2
∵锐角三角形ABC
∴B=60°
(2)sinA+sinC=2sin[(A+C)/2]cos[(A-C)/2]
=(√3)cos[(A-C)/2]
-π/4<(A-C)/2<π/4
√2/2<cos[(A-C)/2]≤1
∴(√6)/2<sinA+sinC≤√3

参考资料: http://iask.sina.com.cn/b/11743139.html

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式