高分求英语翻译~~2 谢绝翻译机
reactionsandgeneexpression[7,8].Despitesuchfluctuationsinthecellularmilieu,theS.elong...
reactions and gene expression [7,8]. Despite such fluctuations in
the cellular milieu, the S. elongatus clock oscillates with high precision
and minimal damping for weeks in constant conditions [8,9].
Somehow, the clock is sufficiently robust to avoid a loss of synchrony
and the resulting spiral into a steady state.
Circadian oscillators evolved long ago, but our understanding of
the molecular mechanisms underlying circadian clocks remains
murky. These mechanisms have been investigated primarily in
cyanobacteria, fungi, flies, plants, and mammals. The prevailing
models for the internal timepieces of all but the first of those
organisms involve a negative transcriptional feedback loop in
which so-called clock genes encode proteins that repress their
own transcription. These negative feedback loops typically are
intertwined with other feedback loops and are overlaid with
post-translational regulation affecting protein stability, activity,
and localization [1]. Disentangling the mechanisms and rigorously
testing models of these oscillators have been hampered by the
complexity of both the oscillators themselves and the cellular environment
in which they are embedded.
An opportunity to break through such complexity recently
emerged from investigations of the circadian clock of S. elongatus,
whose core oscillator consists of just three proteins: KaiA, KaiB,
and KaiC. Although the oscillator originally was thought to be a
transcriptional feedback oscillator analogous to those found in
higher organisms [10], Kondo and colleagues showed in 2005 that
the clock of S. elongatus requires neither transcription nor translation
– oscillations in KaiC phosphorylation state persist in the
absence of transcriptional feedback and protein synthesis [4].
Remarkably, the Kai proteins themselves constitute a circadian
clock: temperature-compensated circadian oscillations in KaiC
phosphorylation can be reconstituted in vitro by combining the
three Kai proteins and adenosine triphosphate (ATP) [11]. This
three-protein, test-tube oscillator displays all three cardinal properties
of a circadian clock: free-run, temperature compensation,
and entrainment [11–13]. Oscillations of KaiC phosphorylation
free-run for at least 10 days in vitro [14], and the period of oscillation
is temperature-compensated [11,13]. The phase of the
in vitro clock is phase-shifted by, and entrainable to, temperature
shifts [12,13], although it is not entrainable by light, presumably
because cellular components required for this property are absent
2. Biochemistry of the Kai oscillator
The ability to reconstitute the oscillator in vitro and to mix and
match its four components (KaiA, KaiB, KaiC, and ATP) in arbitrary
combinations has permitted detailed, quantitative biochemical
characterization of the Kai proteins. Structures of all three proteins
(or their homologs in related organisms) have been solved by 展开
the cellular milieu, the S. elongatus clock oscillates with high precision
and minimal damping for weeks in constant conditions [8,9].
Somehow, the clock is sufficiently robust to avoid a loss of synchrony
and the resulting spiral into a steady state.
Circadian oscillators evolved long ago, but our understanding of
the molecular mechanisms underlying circadian clocks remains
murky. These mechanisms have been investigated primarily in
cyanobacteria, fungi, flies, plants, and mammals. The prevailing
models for the internal timepieces of all but the first of those
organisms involve a negative transcriptional feedback loop in
which so-called clock genes encode proteins that repress their
own transcription. These negative feedback loops typically are
intertwined with other feedback loops and are overlaid with
post-translational regulation affecting protein stability, activity,
and localization [1]. Disentangling the mechanisms and rigorously
testing models of these oscillators have been hampered by the
complexity of both the oscillators themselves and the cellular environment
in which they are embedded.
An opportunity to break through such complexity recently
emerged from investigations of the circadian clock of S. elongatus,
whose core oscillator consists of just three proteins: KaiA, KaiB,
and KaiC. Although the oscillator originally was thought to be a
transcriptional feedback oscillator analogous to those found in
higher organisms [10], Kondo and colleagues showed in 2005 that
the clock of S. elongatus requires neither transcription nor translation
– oscillations in KaiC phosphorylation state persist in the
absence of transcriptional feedback and protein synthesis [4].
Remarkably, the Kai proteins themselves constitute a circadian
clock: temperature-compensated circadian oscillations in KaiC
phosphorylation can be reconstituted in vitro by combining the
three Kai proteins and adenosine triphosphate (ATP) [11]. This
three-protein, test-tube oscillator displays all three cardinal properties
of a circadian clock: free-run, temperature compensation,
and entrainment [11–13]. Oscillations of KaiC phosphorylation
free-run for at least 10 days in vitro [14], and the period of oscillation
is temperature-compensated [11,13]. The phase of the
in vitro clock is phase-shifted by, and entrainable to, temperature
shifts [12,13], although it is not entrainable by light, presumably
because cellular components required for this property are absent
2. Biochemistry of the Kai oscillator
The ability to reconstitute the oscillator in vitro and to mix and
match its four components (KaiA, KaiB, KaiC, and ATP) in arbitrary
combinations has permitted detailed, quantitative biochemical
characterization of the Kai proteins. Structures of all three proteins
(or their homologs in related organisms) have been solved by 展开
4个回答
展开全部
reactions and gene expression [7,8].
反应与基因的表现形式(文献7,8)
Despite such fluctuations in the cellular milieu, the S. elongatus clock oscillates with high precision and minimal damping for weeks in constant conditions [8,9].
在恒定条件下,尽管有细胞媒介的变异,S型的细长生物钟仍然能够在高度的准确性和最小的衰减下,周期性地工作几个星期。
Somehow, the clock is sufficiently robust to avoid a loss of synchrony and the resulting spiral into a steady state.
生物钟足以能够避免同步性的丧失,并能够螺旋式地进入稳定状态,这一点,目前还不清楚其原因。
Circadian oscillators evolved long ago, but our understanding of the molecular mechanisms underlying circadian clocks remains murky.
生物节律已经研究了很久,但是我们对生物钟的分子层次的理解仍然是模糊不清的。
These mechanisms have been investigated primarily in cyanobacteria, fungi, flies, plants, and mammals.
这方面的最初研究是通过藻青菌、真菌、飞虫、植物和哺乳动物进行的。
The prevailing models for the internal timepieces of all but the first of those organisms involve a negative transcriptional feedback loop in which so-called clock genes encode proteins that repress their
own transcription.
对于所有生物(不是第一生物)的内部生物钟的主流性的模型包括了阴性的一个反馈式的转录环,此环被称为时钟基因,它给予蛋白质基因密码,抑制其自身转录。
These negative feedback loops typically are intertwined with other feedback loops and are overlaid with post-translational regulation affecting protein stability, activity, and localization [1].
通常这种阴性的反馈环与转录后的机制互相缠绕、互相重叠,从而影响到蛋白质的稳定性、活跃性和定位性。(文献1)
Disentangling the mechanisms and rigorously testing models of these oscillators have been hampered by the complexity of both the osillators themselves and the cellular environment in which they are embedded.
探清生物钟的机制和对其进行严格的测试工作,由于生物钟以及它们赖以生存的
细胞环境的复杂性而受到阻碍。
An opportunity to break through such complexity recently emerged from investigations of the circadian clock of S. elongatus, whose core oscillator consists of just three proteins: KaiA, KaiB,and KaiC.
打破这种复杂性的机会,最近终于浮现,通过对S型细长的生物钟的研究发现,这种周期性的生物节律由三种蛋白质所形成:KaiA, KaiB,和 KaiC。
Although the oscillator originally was thought to be a transcriptional feedback oscillator analogous to those found in
higher organisms [10], Kondo and colleagues showed in 2005 that the clock of S. elongatus requires neither transcription nor translation–oscillations in KaiC phosphorylation state persist in the absence of transcriptional feedback and protein synthesis [4].
虽然原始的生物钟是模拟高等生物的转录反馈生物节律,但是Kondo和他的同事们在2005年证实S型细长生物钟既不需要转录,也不需要转译---在缺乏转录反馈和蛋白质合成的情况下,在KaiC磷酸化的状态,生物节律仍然持续。(文献4)
Remarkably, the Kai proteins themselves constitute a circadian clock: temperature-ompensated circadian oscillations in KaiC phosphorylation can be reconstituted in vitro by combining the three Kai proteins and adenosine triphosphate (ATP) [11].
显然地,KaiC 蛋白质自身构成了一个生物钟:在磷酸化状态下的温度补偿式的生物钟,结合三种 Kai 蛋白质与三磷酸腺苷,在玻璃试管内可以重构生物钟。
This three-protein, test-tube oscillator displays all three cardinal properties of a circadian clock: free-run, temperature compensation,
and entrainment [11–13].
这种三蛋白质试管内的生物钟显示了所有生物钟的三种基本特性:自由进行、温度补偿和调节。(文献11-13)
Oscillations of KaiC phosphorylation free-run for at least 10 days in vitro [14], and the period of oscillation is temperature-compensated [11,13].
这种 KaiC 磷酸化状态下自由进行的生物钟在试管中可以至少持续10天(文献14),生物钟的周期是温度补偿式的(文献14)。
The phase of the in vitro clock is phase-shifted by, and entrainable to, temperature shifts [12,13], although it is not entrainable by light, presumably because cellular components required for this property are absent 2.
这种在试管中的生物钟会有相移,如温度引起的相移,不过可以调节,虽然现在不可以用光来调节,因为缺乏所需要的细胞成分。
Biochemistry of the Kai oscillator The ability to reconstitute the oscillator in vitro and to mix and match its four components (KaiA, KaiB, KaiC, and ATP) in arbitrary combinations has permitted detailed, quantitative biochemical characterization of the Kai proteins.
Kai 生物钟的生物化学。
在试管中以任意的组合方式,与四种成分(KaiA, KaiB, KaiC, 和三磷酸腺苷)的混合与配对,用以重建生物钟的能力已经细制的进入了蛋白质的生物化学方面的定量分析了。
Structures of all three proteins (or their homologs in related organisms) have been solved by
所有三种蛋白质的结构,以及在有关的生物体的同系物中,已经由....解决了。
反应与基因的表现形式(文献7,8)
Despite such fluctuations in the cellular milieu, the S. elongatus clock oscillates with high precision and minimal damping for weeks in constant conditions [8,9].
在恒定条件下,尽管有细胞媒介的变异,S型的细长生物钟仍然能够在高度的准确性和最小的衰减下,周期性地工作几个星期。
Somehow, the clock is sufficiently robust to avoid a loss of synchrony and the resulting spiral into a steady state.
生物钟足以能够避免同步性的丧失,并能够螺旋式地进入稳定状态,这一点,目前还不清楚其原因。
Circadian oscillators evolved long ago, but our understanding of the molecular mechanisms underlying circadian clocks remains murky.
生物节律已经研究了很久,但是我们对生物钟的分子层次的理解仍然是模糊不清的。
These mechanisms have been investigated primarily in cyanobacteria, fungi, flies, plants, and mammals.
这方面的最初研究是通过藻青菌、真菌、飞虫、植物和哺乳动物进行的。
The prevailing models for the internal timepieces of all but the first of those organisms involve a negative transcriptional feedback loop in which so-called clock genes encode proteins that repress their
own transcription.
对于所有生物(不是第一生物)的内部生物钟的主流性的模型包括了阴性的一个反馈式的转录环,此环被称为时钟基因,它给予蛋白质基因密码,抑制其自身转录。
These negative feedback loops typically are intertwined with other feedback loops and are overlaid with post-translational regulation affecting protein stability, activity, and localization [1].
通常这种阴性的反馈环与转录后的机制互相缠绕、互相重叠,从而影响到蛋白质的稳定性、活跃性和定位性。(文献1)
Disentangling the mechanisms and rigorously testing models of these oscillators have been hampered by the complexity of both the osillators themselves and the cellular environment in which they are embedded.
探清生物钟的机制和对其进行严格的测试工作,由于生物钟以及它们赖以生存的
细胞环境的复杂性而受到阻碍。
An opportunity to break through such complexity recently emerged from investigations of the circadian clock of S. elongatus, whose core oscillator consists of just three proteins: KaiA, KaiB,and KaiC.
打破这种复杂性的机会,最近终于浮现,通过对S型细长的生物钟的研究发现,这种周期性的生物节律由三种蛋白质所形成:KaiA, KaiB,和 KaiC。
Although the oscillator originally was thought to be a transcriptional feedback oscillator analogous to those found in
higher organisms [10], Kondo and colleagues showed in 2005 that the clock of S. elongatus requires neither transcription nor translation–oscillations in KaiC phosphorylation state persist in the absence of transcriptional feedback and protein synthesis [4].
虽然原始的生物钟是模拟高等生物的转录反馈生物节律,但是Kondo和他的同事们在2005年证实S型细长生物钟既不需要转录,也不需要转译---在缺乏转录反馈和蛋白质合成的情况下,在KaiC磷酸化的状态,生物节律仍然持续。(文献4)
Remarkably, the Kai proteins themselves constitute a circadian clock: temperature-ompensated circadian oscillations in KaiC phosphorylation can be reconstituted in vitro by combining the three Kai proteins and adenosine triphosphate (ATP) [11].
显然地,KaiC 蛋白质自身构成了一个生物钟:在磷酸化状态下的温度补偿式的生物钟,结合三种 Kai 蛋白质与三磷酸腺苷,在玻璃试管内可以重构生物钟。
This three-protein, test-tube oscillator displays all three cardinal properties of a circadian clock: free-run, temperature compensation,
and entrainment [11–13].
这种三蛋白质试管内的生物钟显示了所有生物钟的三种基本特性:自由进行、温度补偿和调节。(文献11-13)
Oscillations of KaiC phosphorylation free-run for at least 10 days in vitro [14], and the period of oscillation is temperature-compensated [11,13].
这种 KaiC 磷酸化状态下自由进行的生物钟在试管中可以至少持续10天(文献14),生物钟的周期是温度补偿式的(文献14)。
The phase of the in vitro clock is phase-shifted by, and entrainable to, temperature shifts [12,13], although it is not entrainable by light, presumably because cellular components required for this property are absent 2.
这种在试管中的生物钟会有相移,如温度引起的相移,不过可以调节,虽然现在不可以用光来调节,因为缺乏所需要的细胞成分。
Biochemistry of the Kai oscillator The ability to reconstitute the oscillator in vitro and to mix and match its four components (KaiA, KaiB, KaiC, and ATP) in arbitrary combinations has permitted detailed, quantitative biochemical characterization of the Kai proteins.
Kai 生物钟的生物化学。
在试管中以任意的组合方式,与四种成分(KaiA, KaiB, KaiC, 和三磷酸腺苷)的混合与配对,用以重建生物钟的能力已经细制的进入了蛋白质的生物化学方面的定量分析了。
Structures of all three proteins (or their homologs in related organisms) have been solved by
所有三种蛋白质的结构,以及在有关的生物体的同系物中,已经由....解决了。
展开全部
反应和基因表达[7,8]。尽管在这种波动
蜂窝氛围,细长的时钟振荡美国高精度
和最小的条件在不断周[8,9阻尼]。
不知何故,时钟稳健,足以避免损失同步
并到一个稳定状态产生的恶性循环。
昼夜节律振荡器早已演变,但我们理解
基本生物钟的分子机制仍
黑暗。这些机制主要是在调查
蓝细菌,真菌,果蝇,植物和哺乳动物。普遍
对所有的内部钟表产品,但这些第一
涉及生物负反馈环路的转录
而所谓的生物钟基因编码的蛋白质,压抑
自己的转录。负反馈环,这些通常是
交织在一起的其他反馈回路,并与覆盖
翻译后调控蛋白稳定性的影响,活动,
和本地化[1]。理清机制,严格
这些振荡器测试模式已经妨碍了
复杂性都振荡器自己和细胞环境
它们是嵌入式。
有机会通过如此复杂的突破,最近
摆脱对美国的细长生物钟的调查,
振荡器,其核心组成:只有三种蛋白的KAIA KaiB,
和KaiC。虽然振荡器原本被认为是一
转录反馈振荡器类似的发现
高等生物[10],近藤和同事发现,2005年,
S的长形蛋时钟既不需要也不转录翻译
在KaiC磷酸化状态 - 振荡坚持
缺乏转录和蛋白质合成的反馈[4]。
值得注意的是,启蛋白质本身构成昼夜
时钟:温度补偿的KaiC昼夜振荡
磷酸化,可在体外重组结合
三启蛋白磷酸腺苷(ATP)[11]。这个
三蛋白,试管振荡器显示所有三项基本属性
一个生物钟:自由运行,温度补偿,
和夹带[11-13]。磷酸化的KaiC振荡
自由至少10体外[14]天运行,并且振荡周期
是温度补偿[11,13]。该阶段
体外时钟相移的,和entrainable的,温度
变化[12,13],虽然不是entrainable光,大概
因为细胞成分,此属性所需的缺席
2。生物化学启振荡器
重组的能力在体外振荡器和混合并
比赛的四个组成部分任意(选手Kaia,KaiB,KaiC,和ATP)
组合已准许详细的,定量生化
表征启蛋白质。所有三个结构蛋白
(或相关生物的同源)已解决
蜂窝氛围,细长的时钟振荡美国高精度
和最小的条件在不断周[8,9阻尼]。
不知何故,时钟稳健,足以避免损失同步
并到一个稳定状态产生的恶性循环。
昼夜节律振荡器早已演变,但我们理解
基本生物钟的分子机制仍
黑暗。这些机制主要是在调查
蓝细菌,真菌,果蝇,植物和哺乳动物。普遍
对所有的内部钟表产品,但这些第一
涉及生物负反馈环路的转录
而所谓的生物钟基因编码的蛋白质,压抑
自己的转录。负反馈环,这些通常是
交织在一起的其他反馈回路,并与覆盖
翻译后调控蛋白稳定性的影响,活动,
和本地化[1]。理清机制,严格
这些振荡器测试模式已经妨碍了
复杂性都振荡器自己和细胞环境
它们是嵌入式。
有机会通过如此复杂的突破,最近
摆脱对美国的细长生物钟的调查,
振荡器,其核心组成:只有三种蛋白的KAIA KaiB,
和KaiC。虽然振荡器原本被认为是一
转录反馈振荡器类似的发现
高等生物[10],近藤和同事发现,2005年,
S的长形蛋时钟既不需要也不转录翻译
在KaiC磷酸化状态 - 振荡坚持
缺乏转录和蛋白质合成的反馈[4]。
值得注意的是,启蛋白质本身构成昼夜
时钟:温度补偿的KaiC昼夜振荡
磷酸化,可在体外重组结合
三启蛋白磷酸腺苷(ATP)[11]。这个
三蛋白,试管振荡器显示所有三项基本属性
一个生物钟:自由运行,温度补偿,
和夹带[11-13]。磷酸化的KaiC振荡
自由至少10体外[14]天运行,并且振荡周期
是温度补偿[11,13]。该阶段
体外时钟相移的,和entrainable的,温度
变化[12,13],虽然不是entrainable光,大概
因为细胞成分,此属性所需的缺席
2。生物化学启振荡器
重组的能力在体外振荡器和混合并
比赛的四个组成部分任意(选手Kaia,KaiB,KaiC,和ATP)
组合已准许详细的,定量生化
表征启蛋白质。所有三个结构蛋白
(或相关生物的同源)已解决
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
eactions和基因表达[7,8]。尽管在这种波动
蜂窝氛围,细长的时钟振荡美国高精度
和最小的条件在不断周[8,9阻尼]。
不知何故,时钟稳健,足以避免损失同步
并到一个稳定状态产生的恶性循环。
昼夜节律振荡器早已演变,但我们理解
基本生物钟的分子机制仍
黑暗。这些机制主要是在调查
蓝细菌,真菌,果蝇,植物和哺乳动物。普遍
对所有的内部钟表产品,但这些第一
涉及生物负反馈环路的转录
而所谓的生物钟基因编码的蛋白质,压抑
自己的转录。负反馈环,这些通常是
交织在一起的其他反馈回路,并与覆盖
翻译后调控蛋白稳定性的影响,活动,
和本地化[1]。理清机制和rigo
蜂窝氛围,细长的时钟振荡美国高精度
和最小的条件在不断周[8,9阻尼]。
不知何故,时钟稳健,足以避免损失同步
并到一个稳定状态产生的恶性循环。
昼夜节律振荡器早已演变,但我们理解
基本生物钟的分子机制仍
黑暗。这些机制主要是在调查
蓝细菌,真菌,果蝇,植物和哺乳动物。普遍
对所有的内部钟表产品,但这些第一
涉及生物负反馈环路的转录
而所谓的生物钟基因编码的蛋白质,压抑
自己的转录。负反馈环,这些通常是
交织在一起的其他反馈回路,并与覆盖
翻译后调控蛋白稳定性的影响,活动,
和本地化[1]。理清机制和rigo
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
反应和基因表达[7,8]。 Despite such fluctuations in尽管在这种波动
the cellular milieu, the S. elongatus clock oscillates with high precision蜂窝氛围,细长的时钟振荡美国高精度
and minimal damping for weeks in constant conditions [8,9].和最小的条件在不断周[8,9阻尼]。
Somehow, the clock is sufficiently robust to avoid a loss of synchrony不知何故,时钟稳健,足以避免损失同步
and the resulting spiral into a steady state.并到一个稳定状态产生的恶性循环。
Circadian oscillators evolved long ago, but our understanding of昼夜节律振荡器早已演变,但我们理解
the molecular mechanisms underlying circadian clocks remains基本生物钟的分子机制仍
murky.黑暗。 These mechanisms have been investigated primarily in这些机制主要是在调查
cyanobacteria, fungi, flies, plants, and mammals.蓝细菌,真菌,果蝇,植物和哺乳动物。 The prevailing普遍
models for the internal timepieces of all but the first of those对所有的内部钟表产品,但这些第一
organisms involve a negative transcriptional feedback loop in涉及生物负反馈环路的转录
which so-called clock genes encode proteins that repress their而所谓的生物钟基因编码的蛋白质,压抑
own transcription.自己的转录。 These negative feedback loops typically are负反馈环,这些通常是
intertwined with other feedback loops and are overlaid with交织在一起的其他反馈回路,并与覆盖
post-translational regulation affecting protein stability, activity,翻译后调控蛋白稳定性的影响,活动,
and localization [1].和本地化[1]。 Disentangling the mechanisms and rigorously理清机制,严格
testing models of these oscillators have been hampered by the这些振荡器测试模式已经妨碍了
complexity of both the oscillators themselves and the cellular environment复杂性都振荡器自己和细胞环境
in which they are embedded.它们是嵌入式。
An opportunity to break through such complexity recently有机会通过如此复杂的突破,最近
emerged from investigations of the circadian clock of S. elongatus,摆脱对美国的细长生物钟的调查,
whose core oscillator consists of just three proteins: KaiA, KaiB,振荡器,其核心组成:只有三种蛋白的KAIA KaiB,
and KaiC.和KaiC。 Although the oscillator originally was thought to be a虽然振荡器原本被认为是一
transcriptional feedback oscillator analogous to those found in转录反馈振荡器类似的发现
higher organisms [10], Kondo and colleagues showed in 2005 that高等生物[10],近藤和同事发现,2005年,
the clock of S. elongatus requires neither transcription nor translation S的长形蛋时钟既不需要也不转录翻译
– oscillations in KaiC phosphorylation state persist in the在KaiC磷酸化状态-振荡坚持
absence of transcriptional feedback and protein synthesis [4].缺乏转录和蛋白质合成的反馈[4]。
Remarkably, the Kai proteins themselves constitute a circadian值得注意的是,启蛋白质本身构成昼夜
clock: temperature-compensated circadian oscillations in KaiC时钟:温度补偿的KaiC昼夜振荡
phosphorylation can be reconstituted in vitro by combining the磷酸化,可在体外重组结合
three Kai proteins and adenosine triphosphate (ATP) [11].三启蛋白磷酸腺苷(ATP)[11]。 This这个
three-protein, test-tube oscillator displays all three cardinal properties三蛋白,试管振荡器显示所有三项基本属性
of a circadian clock: free-run, temperature compensation,一个生物钟:自由运行,温度补偿,
and entrainment [11–13].和夹带[11-13]。 Oscillations of KaiC phosphorylation磷酸化的KaiC振荡
free-run for at least 10 days in vitro [14], and the period of oscillation自由至少10体外[14]天运行,并且振荡周期
is temperature-compensated [11,13].是温度补偿[11,13]。 The phase of the该阶段
in vitro clock is phase-shifted by, and entrainable to, temperature体外时钟相移的,和entrainable的,温度
shifts [12,13], although it is not entrainable by light, presumably变化[12,13],虽然不是entrainable光,大概
because cellular components required for this property are absent因为细胞成分,此属性所需的缺席
2. 2。 Biochemistry of the Kai oscillator生物化学启振荡器
The ability to reconstitute the oscillator in vitro and to mix and重组的能力在体外振荡器和混合并
match its four components (KaiA, KaiB, KaiC, and ATP) in arbitrary比赛的四个组成部分任意(选手Kaia,KaiB,KaiC,和ATP)
combinations has permitted detailed, quantitative biochemical组合已准许详细的,定量生化
characterization of the Kai proteins.表征启蛋白质。 Structures of all three proteins所有三个结构蛋白
(or their homologs in related organisms) have been solved by (或相关生物的同源)已解决
the cellular milieu, the S. elongatus clock oscillates with high precision蜂窝氛围,细长的时钟振荡美国高精度
and minimal damping for weeks in constant conditions [8,9].和最小的条件在不断周[8,9阻尼]。
Somehow, the clock is sufficiently robust to avoid a loss of synchrony不知何故,时钟稳健,足以避免损失同步
and the resulting spiral into a steady state.并到一个稳定状态产生的恶性循环。
Circadian oscillators evolved long ago, but our understanding of昼夜节律振荡器早已演变,但我们理解
the molecular mechanisms underlying circadian clocks remains基本生物钟的分子机制仍
murky.黑暗。 These mechanisms have been investigated primarily in这些机制主要是在调查
cyanobacteria, fungi, flies, plants, and mammals.蓝细菌,真菌,果蝇,植物和哺乳动物。 The prevailing普遍
models for the internal timepieces of all but the first of those对所有的内部钟表产品,但这些第一
organisms involve a negative transcriptional feedback loop in涉及生物负反馈环路的转录
which so-called clock genes encode proteins that repress their而所谓的生物钟基因编码的蛋白质,压抑
own transcription.自己的转录。 These negative feedback loops typically are负反馈环,这些通常是
intertwined with other feedback loops and are overlaid with交织在一起的其他反馈回路,并与覆盖
post-translational regulation affecting protein stability, activity,翻译后调控蛋白稳定性的影响,活动,
and localization [1].和本地化[1]。 Disentangling the mechanisms and rigorously理清机制,严格
testing models of these oscillators have been hampered by the这些振荡器测试模式已经妨碍了
complexity of both the oscillators themselves and the cellular environment复杂性都振荡器自己和细胞环境
in which they are embedded.它们是嵌入式。
An opportunity to break through such complexity recently有机会通过如此复杂的突破,最近
emerged from investigations of the circadian clock of S. elongatus,摆脱对美国的细长生物钟的调查,
whose core oscillator consists of just three proteins: KaiA, KaiB,振荡器,其核心组成:只有三种蛋白的KAIA KaiB,
and KaiC.和KaiC。 Although the oscillator originally was thought to be a虽然振荡器原本被认为是一
transcriptional feedback oscillator analogous to those found in转录反馈振荡器类似的发现
higher organisms [10], Kondo and colleagues showed in 2005 that高等生物[10],近藤和同事发现,2005年,
the clock of S. elongatus requires neither transcription nor translation S的长形蛋时钟既不需要也不转录翻译
– oscillations in KaiC phosphorylation state persist in the在KaiC磷酸化状态-振荡坚持
absence of transcriptional feedback and protein synthesis [4].缺乏转录和蛋白质合成的反馈[4]。
Remarkably, the Kai proteins themselves constitute a circadian值得注意的是,启蛋白质本身构成昼夜
clock: temperature-compensated circadian oscillations in KaiC时钟:温度补偿的KaiC昼夜振荡
phosphorylation can be reconstituted in vitro by combining the磷酸化,可在体外重组结合
three Kai proteins and adenosine triphosphate (ATP) [11].三启蛋白磷酸腺苷(ATP)[11]。 This这个
three-protein, test-tube oscillator displays all three cardinal properties三蛋白,试管振荡器显示所有三项基本属性
of a circadian clock: free-run, temperature compensation,一个生物钟:自由运行,温度补偿,
and entrainment [11–13].和夹带[11-13]。 Oscillations of KaiC phosphorylation磷酸化的KaiC振荡
free-run for at least 10 days in vitro [14], and the period of oscillation自由至少10体外[14]天运行,并且振荡周期
is temperature-compensated [11,13].是温度补偿[11,13]。 The phase of the该阶段
in vitro clock is phase-shifted by, and entrainable to, temperature体外时钟相移的,和entrainable的,温度
shifts [12,13], although it is not entrainable by light, presumably变化[12,13],虽然不是entrainable光,大概
because cellular components required for this property are absent因为细胞成分,此属性所需的缺席
2. 2。 Biochemistry of the Kai oscillator生物化学启振荡器
The ability to reconstitute the oscillator in vitro and to mix and重组的能力在体外振荡器和混合并
match its four components (KaiA, KaiB, KaiC, and ATP) in arbitrary比赛的四个组成部分任意(选手Kaia,KaiB,KaiC,和ATP)
combinations has permitted detailed, quantitative biochemical组合已准许详细的,定量生化
characterization of the Kai proteins.表征启蛋白质。 Structures of all three proteins所有三个结构蛋白
(or their homologs in related organisms) have been solved by (或相关生物的同源)已解决
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询