地球是怎样形成的
51个回答
展开全部
原始地球的形成
在地球形成之前,宇宙中有许多小行星绕著太阳转,这些行星互相撞击,
形成了原始的地球,当时的地球还是一颗灸热的大火球,随著碰撞渐渐减少,地球开始由外往内慢慢冷却,产生了一层薄薄的硬壳--地壳,这时候地球内部还是呈现炽热的状态。地球内部喷出大量气体,
其中带著大量的水蒸气,这些水蒸气就形成了一圈包围在地球外围的大气层,地球距离太阳的位置不会太近而致使水蒸气被太阳蒸干,地球本身的大小又有足够的引力将大气层拉住,所以地球才会有得天独厚的大气环境,
大气层形成之后就开始降雨,而形成了原始的海洋。
大约在47亿年前,宇宙中尘埃聚集,形成了地球及其所在的太阳系的其他星球。当时的空气中不含有氧气,而含有很多二氧化碳(碳酸气体)、氮气。
最初的地球很小,但不断有宇宙中的尘埃及小的星体撞击,体积不断增大。而且撞击时能量聚集,温度不断上升,最终融化为液体。
不久,星体撞击的次数减少,地球表面的温度降低,形成地壳。这就是今天的地表。但是,地球内部的岩浆不断喷涌,形成大量的火山。火山灰中的水蒸气冷却凝结为水,从而形成海洋。
球的形成
2003-3-20
原始地球的形成
在地球形成之前,
宇宙中有许多小行星绕著太阳转,
这些行星互相撞击,
形成了原始的地球,
当时的地球还是一颗灸热的大火球
随著碰撞渐渐减少,
地球开始由外往内慢慢冷却,
产生了一层薄薄的硬壳--地壳,
这时候地球内部还是呈现炽热的状态。
大气与海洋的形成
地球内部喷出大量气体,
其中带著大量的水蒸气,
这些水蒸气就形成了一圈包围在地球外围的大气层,
地球距离太阳的位置不会太近而致使水蒸气被太阳蒸干,
地球本身的大小又有足够的引力将大气层拉住,
所以地球才会有得天独厚的大气环境,
大气层形成之后就开始降雨,
而形成了原始的海洋。
在地球形成之前,宇宙中有许多小行星绕著太阳转,这些行星互相撞击,
形成了原始的地球,当时的地球还是一颗灸热的大火球,随著碰撞渐渐减少,地球开始由外往内慢慢冷却,产生了一层薄薄的硬壳--地壳,这时候地球内部还是呈现炽热的状态。地球内部喷出大量气体,
其中带著大量的水蒸气,这些水蒸气就形成了一圈包围在地球外围的大气层,地球距离太阳的位置不会太近而致使水蒸气被太阳蒸干,地球本身的大小又有足够的引力将大气层拉住,所以地球才会有得天独厚的大气环境,
大气层形成之后就开始降雨,而形成了原始的海洋。
大约在47亿年前,宇宙中尘埃聚集,形成了地球及其所在的太阳系的其他星球。当时的空气中不含有氧气,而含有很多二氧化碳(碳酸气体)、氮气。
最初的地球很小,但不断有宇宙中的尘埃及小的星体撞击,体积不断增大。而且撞击时能量聚集,温度不断上升,最终融化为液体。
不久,星体撞击的次数减少,地球表面的温度降低,形成地壳。这就是今天的地表。但是,地球内部的岩浆不断喷涌,形成大量的火山。火山灰中的水蒸气冷却凝结为水,从而形成海洋。
球的形成
2003-3-20
原始地球的形成
在地球形成之前,
宇宙中有许多小行星绕著太阳转,
这些行星互相撞击,
形成了原始的地球,
当时的地球还是一颗灸热的大火球
随著碰撞渐渐减少,
地球开始由外往内慢慢冷却,
产生了一层薄薄的硬壳--地壳,
这时候地球内部还是呈现炽热的状态。
大气与海洋的形成
地球内部喷出大量气体,
其中带著大量的水蒸气,
这些水蒸气就形成了一圈包围在地球外围的大气层,
地球距离太阳的位置不会太近而致使水蒸气被太阳蒸干,
地球本身的大小又有足够的引力将大气层拉住,
所以地球才会有得天独厚的大气环境,
大气层形成之后就开始降雨,
而形成了原始的海洋。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原始地球的形成
在地球形成之前,宇宙中有许多小行星绕著太阳转,这些行星互相撞击,
形成了原始的地球,当时的地球还是一颗灸热的大火球,随著碰撞渐渐减少,地球开始由外往内慢慢冷却,产生了一层薄薄的硬壳--地壳,这时候地球内部还是呈现炽热的状态。地球内部喷出大量气体,
其中带著大量的水蒸气,这些水蒸气就形成了一圈包围在地球外围的大气层,地球距离太阳的位置不会太近而致使水蒸气被太阳蒸干,地球本身的大小又有足够的引力将大气层拉住,所以地球才会有得天独厚的大气环境,
大气层形成之后就开始降雨,而形成了原始的海洋。
大约在47亿年前,宇宙中尘埃聚集,形成了地球及其所在的太阳系的其他星球。当时的空气中不含有氧气,而含有很多二氧化碳(碳酸气体)、氮气。
最初的地球很小,但不断有宇宙中的尘埃及小的星体撞击,体积不断增大。而且撞击时能量聚集,温度不断上升,最终融化为液体。
不久,星体撞击的次数减少,地球表面的温度降低,形成地壳。这就是今天的地表。但是,地球内部的岩浆不断喷涌,形成大量的火山。火山灰中的水蒸气冷却凝结为水,从而形成海洋。
球的形成
2003-3-20
原始地球的形成
在地球形成之前,
宇宙中有许多小行星绕著太阳转,
这些行星互相撞击,
形成了原始的地球,
当时的地球还是一颗灸热的大火球
随著碰撞渐渐减少,
地球开始由外往内慢慢冷却,
产生了一层薄薄的硬壳--地壳,
这时候地球内部还是呈现炽热的状态。
大气与海洋的形成
地球内部喷出大量气体,
其中带著大量的水蒸气,
这些水蒸气就形成了一圈包围在地球外围的大气层,
地球距离太阳的位置不会太近而致使水蒸气被太阳蒸干,
地球本身的大小又有足够的引力将大气层拉住,
所以地球才会有得天独厚的大气环境,
大气层形成之后就开始降雨,
而形成了原始的海洋。
在地球形成之前,宇宙中有许多小行星绕著太阳转,这些行星互相撞击,
形成了原始的地球,当时的地球还是一颗灸热的大火球,随著碰撞渐渐减少,地球开始由外往内慢慢冷却,产生了一层薄薄的硬壳--地壳,这时候地球内部还是呈现炽热的状态。地球内部喷出大量气体,
其中带著大量的水蒸气,这些水蒸气就形成了一圈包围在地球外围的大气层,地球距离太阳的位置不会太近而致使水蒸气被太阳蒸干,地球本身的大小又有足够的引力将大气层拉住,所以地球才会有得天独厚的大气环境,
大气层形成之后就开始降雨,而形成了原始的海洋。
大约在47亿年前,宇宙中尘埃聚集,形成了地球及其所在的太阳系的其他星球。当时的空气中不含有氧气,而含有很多二氧化碳(碳酸气体)、氮气。
最初的地球很小,但不断有宇宙中的尘埃及小的星体撞击,体积不断增大。而且撞击时能量聚集,温度不断上升,最终融化为液体。
不久,星体撞击的次数减少,地球表面的温度降低,形成地壳。这就是今天的地表。但是,地球内部的岩浆不断喷涌,形成大量的火山。火山灰中的水蒸气冷却凝结为水,从而形成海洋。
球的形成
2003-3-20
原始地球的形成
在地球形成之前,
宇宙中有许多小行星绕著太阳转,
这些行星互相撞击,
形成了原始的地球,
当时的地球还是一颗灸热的大火球
随著碰撞渐渐减少,
地球开始由外往内慢慢冷却,
产生了一层薄薄的硬壳--地壳,
这时候地球内部还是呈现炽热的状态。
大气与海洋的形成
地球内部喷出大量气体,
其中带著大量的水蒸气,
这些水蒸气就形成了一圈包围在地球外围的大气层,
地球距离太阳的位置不会太近而致使水蒸气被太阳蒸干,
地球本身的大小又有足够的引力将大气层拉住,
所以地球才会有得天独厚的大气环境,
大气层形成之后就开始降雨,
而形成了原始的海洋。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
大约在66亿年前,银河系内发生过一次大爆炸,其碎片和散漫物质经过长时间的凝集,大约在46亿年前形成了太阳系。作为太阳系一员的地球也在46亿年前形成了。接着,冰冷的星云物质释放出大量的引力势能,再转化为动能、热能,致使温度升高,加上地球内部元素的放射性热能也发生增温作用,故初期的地球呈熔融状态。高温的地球在旋转过程中其中的物质发生分异,重的元素下沉到中心凝聚为地核,较轻的物质构成地幔和地壳,逐渐出现了圈层结构。这个过程经过了漫长的时间,大约在38亿年前出现原始地壳,这个时间与多数月球表面的岩石年龄一致。
生命的起源与演化是和宇宙的起源与演化密切相关的。生命的构成元素如碳、氢、氧、氮、磷、硫等是来自“大爆炸”后元素的演化。资料表明前生物阶段的化学演化并不局限于地球,在宇宙空间中广泛地存在着化学演化的产物。在星际演化中,某些生物单分子,如氨基酸、嘌呤、嘧啶等可能形成于星际尘埃或凝聚的星云中,接着在行星表面的一定条件下产生了象多肽、多聚核苷酸等生物高分子。通过若干前生物演化的过渡形式最终在地球上形成了最原始的生物系统,即具有原始细胞结构的生命。至此,生物学的演化开始,直到今天地球上产生了无数复杂的生命形式。
38亿年前,地球上形成了稳定的陆块,各种证据表明液态的水圈是热的,甚至是沸腾的。现生的一些极端嗜热的古细菌和甲烷菌可能最接近于地球上最古老的生命形式,其代谢方式可能是化学无机自养。澳大利亚西部瓦拉伍那群中35亿年前的微生物可能是地球上最早的生命证据。
原始地壳的出现,标志着地球由天文行星时代进入地质发展时代,具有原始细胞结构的生命也开始逐渐形成。但是在很长的时间内尚无较多的生物出现,一直到距今5.4亿年前的寒武纪,带壳的后生动物才大量出现,故把寒武纪以后的地质时代称为显生宙
生命的起源与演化是和宇宙的起源与演化密切相关的。生命的构成元素如碳、氢、氧、氮、磷、硫等是来自“大爆炸”后元素的演化。资料表明前生物阶段的化学演化并不局限于地球,在宇宙空间中广泛地存在着化学演化的产物。在星际演化中,某些生物单分子,如氨基酸、嘌呤、嘧啶等可能形成于星际尘埃或凝聚的星云中,接着在行星表面的一定条件下产生了象多肽、多聚核苷酸等生物高分子。通过若干前生物演化的过渡形式最终在地球上形成了最原始的生物系统,即具有原始细胞结构的生命。至此,生物学的演化开始,直到今天地球上产生了无数复杂的生命形式。
38亿年前,地球上形成了稳定的陆块,各种证据表明液态的水圈是热的,甚至是沸腾的。现生的一些极端嗜热的古细菌和甲烷菌可能最接近于地球上最古老的生命形式,其代谢方式可能是化学无机自养。澳大利亚西部瓦拉伍那群中35亿年前的微生物可能是地球上最早的生命证据。
原始地壳的出现,标志着地球由天文行星时代进入地质发展时代,具有原始细胞结构的生命也开始逐渐形成。但是在很长的时间内尚无较多的生物出现,一直到距今5.4亿年前的寒武纪,带壳的后生动物才大量出现,故把寒武纪以后的地质时代称为显生宙
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
地球起源问题自18世纪中叶以来同样存在多种学说。目前较流行的看法是,大约在46亿年前,从太阳星云中开始分化出原始地球,温度较低,轻重元素浑然一体,并无分层结构。原始地球一旦形成,有利于继续吸积太阳星云物质是体积和质量不断增大,同时因重力分异和放射性元素蜕变而增加温度。当原始地球内部物质增温达到熔融状态时,比重大的亲铁元素加速向地心下沉,成为铁镍地核,比重小的亲石元素上浮组成地幔和地壳,更轻的液态和气态成分,通过火山喷发溢出地表形成原始的水圈和大气圈。从此,行星地球开始了不同圈层之间相互作用,以及频繁发生物质—能量交换的演化历史。
现在最权威的说法是:在太阳系形成初期,99%以上的物质向中心聚合成为太阳,周围还有部分散在的物质碎片围绕着太阳旋转,经过很长一段时间的碰撞和引力作用,散在的碎片逐渐聚合成了九大行星,但那时的地球只是一团混沌的物质,又经过了几十万年,物质逐渐冷却凝固,形成了地球的初步形态,再经过几十万年,由于地球的引力作用,由地球内部化学反应所产生的气体喷出后被保存在地球周围,形成了大气层,并由氢气和氧气化合成了水,再然后经过太阳的能量辐射,地球本身的电场、磁场作用和适宜的生存环境,由水中产生了有机物,也就是一切生命的祖先……
现在最权威的说法是:在太阳系形成初期,99%以上的物质向中心聚合成为太阳,周围还有部分散在的物质碎片围绕着太阳旋转,经过很长一段时间的碰撞和引力作用,散在的碎片逐渐聚合成了九大行星,但那时的地球只是一团混沌的物质,又经过了几十万年,物质逐渐冷却凝固,形成了地球的初步形态,再经过几十万年,由于地球的引力作用,由地球内部化学反应所产生的气体喷出后被保存在地球周围,形成了大气层,并由氢气和氧气化合成了水,再然后经过太阳的能量辐射,地球本身的电场、磁场作用和适宜的生存环境,由水中产生了有机物,也就是一切生命的祖先……
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2018-06-26 · 知道合伙人教育行家
关注
展开全部
自转.
几百年前,人们就提出了很多证明地球自转的方法,著名的“傅科摆”使我们真正看到了地球的自转,但是,地球为什么会绕轴自转?为什么会绕太阳公转呢?这是一个多年来一直令科学家十分感兴趣的问题,粗略看来,旋转是宇宙间诸天体一种基本的运动形式,但要真正回答这个问题,还必须首先搞清楚地球和太阳系是怎么形成的.地球自转和公转的产生与太阳系的形成密切相关.
现代天文学理论认为,太阳系是由所谓的原始星云形成的,原始星云是一大片十分稀薄的气体云,50亿年前受某种扰动影响,在引力的作用下向中心收缩.经过漫长时期的演化,中心部分物质的密度越来越大,温度也越来越高,终于达到可以引发热核反应的程度,而演变成了太阳.在太阳周围的残余气体则逐渐形成一个旋转的盘状气体层,经过收缩、碰撞、捕获、积聚等过程,在气体层中逐步聚集成固体颗粒、微行星、原始行星,最后形成一个个独立的大行星和小行星等太阳系天体.
我们知道,要测量一个直线运动的物体运动快慢,可以用速度来表示,那么物体的旋转状况又用什么来衡量呢?一种办法就是用“角动量”.对于一个绕定点转动的物体而言,它的角动量等于质量乘以速度,再乘以该物体与定点的距离.物理学上有一条很重要的角动量守恒定律,它是说,一个转动物体.如果不受外力矩作用,它的角动量就不会因物体形状的变化而变化.例如一个芭蕾舞演员,当他在旋转过程中突然把手臂收起来的时候(质心与定点的距离变小),他的旋转速度就会加快,因为只有这样才能保证角动量不变.这一定律在地球自转速度的产生中起着重要作用.
形成太阳系的原始星云原来就带有角动量,在形成太阳和行星系统之后,它的角动量不会损失,但必然发生重新分布,各个星体在漫长的积聚物质的过程中分别从原始星云中得到了一定的角动量.由于角动量守恒,各行星在收缩过程中转速也将越来越快.地球也不例外,它所获得的角动量主要分配在地球绕太阳的公转,地月系统的相互绕转和地球的自转中,这就是地球自转的由来,但要真正分析地球和其他各大行星的公转运动和自转运动还需要科学家们做大量的研究工作.
这就是说,在地球的形成过程中,运动——尤其指旋转,自始至终伴随着地球的形成过程而不是地球形成之后再在某种原因下开始自转或公转的.
几百年前,人们就提出了很多证明地球自转的方法,著名的“傅科摆”使我们真正看到了地球的自转,但是,地球为什么会绕轴自转?为什么会绕太阳公转呢?这是一个多年来一直令科学家十分感兴趣的问题,粗略看来,旋转是宇宙间诸天体一种基本的运动形式,但要真正回答这个问题,还必须首先搞清楚地球和太阳系是怎么形成的.地球自转和公转的产生与太阳系的形成密切相关.
现代天文学理论认为,太阳系是由所谓的原始星云形成的,原始星云是一大片十分稀薄的气体云,50亿年前受某种扰动影响,在引力的作用下向中心收缩.经过漫长时期的演化,中心部分物质的密度越来越大,温度也越来越高,终于达到可以引发热核反应的程度,而演变成了太阳.在太阳周围的残余气体则逐渐形成一个旋转的盘状气体层,经过收缩、碰撞、捕获、积聚等过程,在气体层中逐步聚集成固体颗粒、微行星、原始行星,最后形成一个个独立的大行星和小行星等太阳系天体.
我们知道,要测量一个直线运动的物体运动快慢,可以用速度来表示,那么物体的旋转状况又用什么来衡量呢?一种办法就是用“角动量”.对于一个绕定点转动的物体而言,它的角动量等于质量乘以速度,再乘以该物体与定点的距离.物理学上有一条很重要的角动量守恒定律,它是说,一个转动物体.如果不受外力矩作用,它的角动量就不会因物体形状的变化而变化.例如一个芭蕾舞演员,当他在旋转过程中突然把手臂收起来的时候(质心与定点的距离变小),他的旋转速度就会加快,因为只有这样才能保证角动量不变.这一定律在地球自转速度的产生中起着重要作用.
形成太阳系的原始星云原来就带有角动量,在形成太阳和行星系统之后,它的角动量不会损失,但必然发生重新分布,各个星体在漫长的积聚物质的过程中分别从原始星云中得到了一定的角动量.由于角动量守恒,各行星在收缩过程中转速也将越来越快.地球也不例外,它所获得的角动量主要分配在地球绕太阳的公转,地月系统的相互绕转和地球的自转中,这就是地球自转的由来,但要真正分析地球和其他各大行星的公转运动和自转运动还需要科学家们做大量的研究工作.
这就是说,在地球的形成过程中,运动——尤其指旋转,自始至终伴随着地球的形成过程而不是地球形成之后再在某种原因下开始自转或公转的.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询