请那位英语高高手帮忙翻译下,救命的,拜托拜托
Thedistributionoforganicmatteramongthesizefractionsofsoilisrelatedtolevelsoffreeoxide...
The distribution of organic matter among the size fractions of soil is related to levels of free oxides (Fe and Al) (Curtin 2002), which provide loci for attachment of organic functional groups to mineral surfaces (Kaiser and Guggenberger 2000). Adsorption of Pi is also related to free oxide concentrations (Agbenin and Tiessen 1994).Thus, the distribution of Po among the mineral fractions of soil should be broadly similar to that of Pi, as was observed by Tiessen and Stewart (1983). There was a reasonably strong correlation (R2=0.63, P<0.001) between LF-Po and whole soil Po. One explanation for this observation is that Po adsorbed to mineral material
represented a significant proportion of the Po in LF.Consistent with the view that C in LF is mostly present in free organic matter (Gregorich and Ellert 1993), LF-C
was only weakly related (R2=0.25, P<0.05) to the C concentration of whole soil. Given the apparent similarity in the proportions of fine mineral material in LF and
whole soil, it is reasonable to postulate that, as in the case of Pi (Fig. 2), mineral-associated Po in LF would be quantitatively similar to the whole soil Po concentration.Based on the assumption of a 1:1 relationship between soil Po and mineral-associated Po in LF, it can be calculated from the data in Tables 1 and 3 that the majority (63–76%) of LF-Po may be bound to mineral surfaces, with only about a quarter to one-third of Po being in the non-humic component of LF (Table 4). These estimates provide only rough approximations of the relative amounts of Po in mineral-associated and free organic matter. However, there can be no doubt that LF contains a substantial amount of reactive mineral material or that Po bound to this material may be a major form of Po in LF.
As organic C tends to have the same distribution among the size fractions of soil as Po (Tiessen and Stewart 1983), the approach described above for Po can
be used to obtain an indication of the distribution of LF-C between mineral associated and free organic matter.Assuming that the concentration of mineral-associated C in LF is the same as the whole soil C concentration,
mineral-associated C could represent about 40–50 g kg-1 out of a total LF-organic C concentration of ~ 250 g kg-1.Thus, stable, mineral-associated C may account for up to about 20% of the C in LF (Table 4). The larger proportion of Po than C associated with mineral surfaces of LF reflects the fact the LF was far less enriched in Po than C(as indicated earlier, average LF enrichment ratios of C and Po were 5.6 and 1.5, respectively). If it is assumed that the elemental composition (C:Po; C:N ratio) of mineral-associated organic matter in LF is similar to that of whole soil organic matter, it follows that an element showing large enrichment in LF will be found to a relatively greater extent in the “free” organic component of LF than an element with a low enrichment ratio. 展开
represented a significant proportion of the Po in LF.Consistent with the view that C in LF is mostly present in free organic matter (Gregorich and Ellert 1993), LF-C
was only weakly related (R2=0.25, P<0.05) to the C concentration of whole soil. Given the apparent similarity in the proportions of fine mineral material in LF and
whole soil, it is reasonable to postulate that, as in the case of Pi (Fig. 2), mineral-associated Po in LF would be quantitatively similar to the whole soil Po concentration.Based on the assumption of a 1:1 relationship between soil Po and mineral-associated Po in LF, it can be calculated from the data in Tables 1 and 3 that the majority (63–76%) of LF-Po may be bound to mineral surfaces, with only about a quarter to one-third of Po being in the non-humic component of LF (Table 4). These estimates provide only rough approximations of the relative amounts of Po in mineral-associated and free organic matter. However, there can be no doubt that LF contains a substantial amount of reactive mineral material or that Po bound to this material may be a major form of Po in LF.
As organic C tends to have the same distribution among the size fractions of soil as Po (Tiessen and Stewart 1983), the approach described above for Po can
be used to obtain an indication of the distribution of LF-C between mineral associated and free organic matter.Assuming that the concentration of mineral-associated C in LF is the same as the whole soil C concentration,
mineral-associated C could represent about 40–50 g kg-1 out of a total LF-organic C concentration of ~ 250 g kg-1.Thus, stable, mineral-associated C may account for up to about 20% of the C in LF (Table 4). The larger proportion of Po than C associated with mineral surfaces of LF reflects the fact the LF was far less enriched in Po than C(as indicated earlier, average LF enrichment ratios of C and Po were 5.6 and 1.5, respectively). If it is assumed that the elemental composition (C:Po; C:N ratio) of mineral-associated organic matter in LF is similar to that of whole soil organic matter, it follows that an element showing large enrichment in LF will be found to a relatively greater extent in the “free” organic component of LF than an element with a low enrichment ratio. 展开
3个回答
展开全部
中间分布的有机物质的大小有关,水平的免费氧化物(铁和铝)(2002),提供专业的附件的位点有机官能团对矿物表面(2000),Guggenberger凯泽·波莫恩特医院。吸附Pi也与自由的氧化物含量(1994),Tiessen Agbenin中心点,分布在矿物馏份订单的土壤应大致相似,被观测到Pi Tiessen和斯图尔特(1983)。有一个合理的强大支持,R2相关(P < 0.001),整体LF-Po土壤即可。有一种解释这个观察,对矿物材料吸附订单
代表的比例很高,在保一致的看法,在真空中大部分现在免费有机物(1993),Gregorich和Ellert LF-C
只有弱相关(R2 = 0.25%,P < 0.05),C浓度的整体的土壤。在给定的比例明显相似的矿物材料在LF和
整个土壤,是合理的假设,如Pi(图2),mineral-associated博在真空定量相似,将整个博浓度假设基础上的一个1:1 mineral-associated之间的关系及土壤中宝,可以计算出真空从数据表1号和3号,多数(63-76%),当用何法捆绑LF-Po矿物表面,只有大约1 / 4到1 / 3的订单是在non-humic组成部分(表4)的真空。这些估计只提供粗糙近似相对数量的订单在mineral-associated和自由的有机物质。但是,毫无疑问,保含有大量的活性矿物材料或博注定该物质可能是一种主要形式的博在真空。
作为有机C往往会有相同的大小分布在土壤和Tiessen和斯图尔特(1983),这个方法可以对上述订单
被用来获取的分布及免费LF-C有关之间的有机物质矿物质…假设这个浓度的mineral-associated C一样在真空浓缩,整个C
mineral-associated C能代表了40-50 g kg-1总共LF-organic C浓度的~ 250克kg-1。因此,稳定,mineral-associated C可以占20%的C在真空(表4)。这个大比例的订单比C与矿物表面LF反映了一个事实对小得多(丰富博多像前面所述,平均LF富集比C和博是5.6和1.5)。如果它假定这个元素(C:博;C:信噪比)的mineral-associated有机物LF类似于整个土壤有机质和由此而来的一个元素的富集表现在LF将大到相对更大程度上发现的“自由”的有机组成部分和一个比一个元素的真空浓缩率低。
代表的比例很高,在保一致的看法,在真空中大部分现在免费有机物(1993),Gregorich和Ellert LF-C
只有弱相关(R2 = 0.25%,P < 0.05),C浓度的整体的土壤。在给定的比例明显相似的矿物材料在LF和
整个土壤,是合理的假设,如Pi(图2),mineral-associated博在真空定量相似,将整个博浓度假设基础上的一个1:1 mineral-associated之间的关系及土壤中宝,可以计算出真空从数据表1号和3号,多数(63-76%),当用何法捆绑LF-Po矿物表面,只有大约1 / 4到1 / 3的订单是在non-humic组成部分(表4)的真空。这些估计只提供粗糙近似相对数量的订单在mineral-associated和自由的有机物质。但是,毫无疑问,保含有大量的活性矿物材料或博注定该物质可能是一种主要形式的博在真空。
作为有机C往往会有相同的大小分布在土壤和Tiessen和斯图尔特(1983),这个方法可以对上述订单
被用来获取的分布及免费LF-C有关之间的有机物质矿物质…假设这个浓度的mineral-associated C一样在真空浓缩,整个C
mineral-associated C能代表了40-50 g kg-1总共LF-organic C浓度的~ 250克kg-1。因此,稳定,mineral-associated C可以占20%的C在真空(表4)。这个大比例的订单比C与矿物表面LF反映了一个事实对小得多(丰富博多像前面所述,平均LF富集比C和博是5.6和1.5)。如果它假定这个元素(C:博;C:信噪比)的mineral-associated有机物LF类似于整个土壤有机质和由此而来的一个元素的富集表现在LF将大到相对更大程度上发现的“自由”的有机组成部分和一个比一个元素的真空浓缩率低。
展开全部
有机质的土壤中的粒级分布与自由氧化物的水平(铁,铝)(柯廷2002年),这为有机官能团的依恋矿物表面位点(Kaiser和古根伯格2000年)。吸附的皮也与自由氧化物浓度(Agbenin和迪森1994年)。因此,土壤中应该大致相同的皮的矿物组分分布区,正如迪森和斯图尔特(1983)观察。有一个合理很强的相关性(R2的= 0.63,P“0.001)之间的低频坡整个土壤宝。这种观察的一个解释是,宝吸附到矿物材料
代表了LF.Consistent在波河的看法,在低频C是主要在自由有机物存在(Gregorich和埃雷特1993),低频- ç相当大的比例
只有弱相关(R2的= 0.25,P“0.05)到整个土壤C浓度。鉴于在低频矿物材料和良好的比例明显的相似性
整个土壤,可以合理地假定,由于在皮案(图2),矿产相关的低频将定量与整体相似土壤宝上一个1:1的关系的假设concentration.Based宝土壤保和矿物相关的低频区,它可以计算出从表1的数据,而大部分(63-76%)的低频坡可以绑定到矿物表面3票,只有约四分之一,第三宝是在非胡敏低频成分(表4)。这些估计数的宝在矿产相对数量只有粗略估计,相关的和自由的有机物质。但是,毫无疑问是低频含有活性矿物材料或大量宝绑定这种材料可能是宝中低频的主要形式。
由于有机碳往往有宝之间的土壤粒级(迪森和斯图尔特1983年)相同的分布,上述方法可为宝
用来获取的低频分配情况,矿物℃之间的有机联系和自由matter.Assuming,矿物含量相关的低频C是作为整个土壤C含量相同,
矿产相关C能约占40-50克公斤- 1出1个低频,有机碳浓度〜250克公斤,1.Thus,稳定,矿产相关C可能占了约20%的C在低频(见表4)。在蒲较大比例比C与矿物相关的低频表面反映了一个事实的低频丰富少得多宝比C(如前所述,平均低频丰富的C比率和大埔分别为5.6和1.5,分别)。如果假定元素组成(丙:宝;荤:N比矿物)相关的低频类似的整个土壤有机质,有机物质,可以得出一个元素显示在低频就会发现大型活动在“自由”的有机组成部分的低频比一个低浓缩铀元素的比例比较大的程度。
代表了LF.Consistent在波河的看法,在低频C是主要在自由有机物存在(Gregorich和埃雷特1993),低频- ç相当大的比例
只有弱相关(R2的= 0.25,P“0.05)到整个土壤C浓度。鉴于在低频矿物材料和良好的比例明显的相似性
整个土壤,可以合理地假定,由于在皮案(图2),矿产相关的低频将定量与整体相似土壤宝上一个1:1的关系的假设concentration.Based宝土壤保和矿物相关的低频区,它可以计算出从表1的数据,而大部分(63-76%)的低频坡可以绑定到矿物表面3票,只有约四分之一,第三宝是在非胡敏低频成分(表4)。这些估计数的宝在矿产相对数量只有粗略估计,相关的和自由的有机物质。但是,毫无疑问是低频含有活性矿物材料或大量宝绑定这种材料可能是宝中低频的主要形式。
由于有机碳往往有宝之间的土壤粒级(迪森和斯图尔特1983年)相同的分布,上述方法可为宝
用来获取的低频分配情况,矿物℃之间的有机联系和自由matter.Assuming,矿物含量相关的低频C是作为整个土壤C含量相同,
矿产相关C能约占40-50克公斤- 1出1个低频,有机碳浓度〜250克公斤,1.Thus,稳定,矿产相关C可能占了约20%的C在低频(见表4)。在蒲较大比例比C与矿物相关的低频表面反映了一个事实的低频丰富少得多宝比C(如前所述,平均低频丰富的C比率和大埔分别为5.6和1.5,分别)。如果假定元素组成(丙:宝;荤:N比矿物)相关的低频类似的整个土壤有机质,有机物质,可以得出一个元素显示在低频就会发现大型活动在“自由”的有机组成部分的低频比一个低浓缩铀元素的比例比较大的程度。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有机质的土壤中的粒级分布与自由氧化物的水平(铁,铝)(柯廷2002年),这为有机官能团的依恋矿物表面位点(Kaiser和古根伯格2000年)。吸附的皮也与自由氧化物浓度(Agbenin和迪森994)。因此,土壤中应该大致相同的皮的矿物组分分布区,正如迪森和斯图尔特(1983)观察。有一个合理很强的相关性(R2的= 0.63,P“0.001)之间的低频坡整个土壤宝。这种观察的一个解释是,宝吸附到矿物材料为代表的大埔LF.Consistent相当大的比例的观点,在低频C是主要在自由有机物存在(Gregorich和埃雷特1993),低频- C是唯一的弱相关(R2的= 0.25,P“0.05)到整个土壤C浓度。鉴于在低频andwhole土壤矿物材料优良的比例明显的相似性,这是合理的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询