设z=z(x,y)由方程x/z=ln(y/z)所确定的隐函数 求∂z/∂y,∂z/∂x
2个回答
展开全部
两边对x求导,把y看做常数,有
(x'z -x∂z/∂x)/z^2 =(z/y)*∂z/∂x
z -x∂z/∂x = (y/z)*∂z/∂x
(x+y/z)∂z/∂x=z
所以∂z/∂x = z/(x+y/z)=z^2/(xz+y)
两边对y求导,把x看做常数,有
-x/(z^2)*(∂z/∂y) = 1/(y/z) *(z-∂z/∂y y)/z^2
-x/(z^2)*(∂z/∂y) = 1/y -(∂z/∂y )/z
[1/z-x/(z^2)](∂z/∂y)=1/y
所以∂z/∂y = z^2/[y(z-x)]
(x'z -x∂z/∂x)/z^2 =(z/y)*∂z/∂x
z -x∂z/∂x = (y/z)*∂z/∂x
(x+y/z)∂z/∂x=z
所以∂z/∂x = z/(x+y/z)=z^2/(xz+y)
两边对y求导,把x看做常数,有
-x/(z^2)*(∂z/∂y) = 1/(y/z) *(z-∂z/∂y y)/z^2
-x/(z^2)*(∂z/∂y) = 1/y -(∂z/∂y )/z
[1/z-x/(z^2)](∂z/∂y)=1/y
所以∂z/∂y = z^2/[y(z-x)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询