如图,对称轴为直线x=-1的抛物线y=ax05 bx c与x轴相交于A,B两点,其中点A的坐标为(

-3,0)(1)已知a=1,C为抛物线与y轴的交点。①若点P在抛物线上,且S... -3,0)
(1)已知a=1,C为抛物线与y轴的交点。
①若点P在抛物线上,且S
展开
 我来答
教育行业每日节奏
2013-11-28 · TA获得超过8.1万个赞
知道小有建树答主
回答量:1.5万
采纳率:93%
帮助的人:800万
展开全部
(1)∵对称轴为直线x=-1的抛物线y=ax^2+bx+c(a≠0)与x轴相交于A、B两点,
∴A、B两点关于直线x=-1对称,
∵点A的坐标为(-3,0)
∴点B的坐标为(1,0)
(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=-1,
对称轴x=-b/(2a)=-1

解得b=2.
将B(1,0)代入y=x^2+2x+c,
得1+2+c=0,解得c=-3.
则二次函数的解析式为y=x^2+2x-3,
∴抛物线与y轴的交点C的坐标为(0,-3),OC=3.
设P点坐标为(x,x^2+2x-3),
∵S△POC=4S△BOC,
1/2*|x|*3=4*1/2*1*3

∴|x|=4,x=±4.
当x=4时,x^2+2x-3=16+8-3=21;
当x=-4时,x^2+2x-3=16-8-3=5.
所以点P的坐标为(4,21)或(-4,5);
②设直线AC的解析式为y=kx+t,将A(-3,0),C(0,-3)代入,


−3k+t=0
t=−3
解得

k=−1
t=−3
即直线AC的解析式为y=-x-3.

延长AD交y轴于E

设Q点坐标为(x,-x-3)(-3≤x≤0),则D点坐标为(x,x^2+2x-3),
E(0,3(x-1))
△ACD的面积=△ACE面积-△DCE面积
=1/2*3*(3(1-x)-3)-1/2*(-x)*(3(1-x)-3)
=-3/2x^2-9/2x
对称轴x=-3/2时有最大值,满足-3≤x≤0
∴Q=(-3/2,-3/2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式