已知,sinA+cosB=3/5,cosA-sinB=4/5,求cos(A-B)
1个回答
展开全部
解:因为 (sinA + cosB)^2 = sin^2 A + 2sinAcosB + cos^2 B = 9/25 (1)
(cosA - sinB)^2 = cos^2 A - 2cosAsinB + sin^2 B = 16/25 (2)
(1)式 +(2)式得
(sin^2 A + cos^2 A) + ( sin^2 B + cos^2 B) + 2(sinAcosB -cosAsinB) = 1
sinAcosB - cosAsinB = sin(A-B)
即有: sin(A-B) = 1/2
所以 0 < A -B < π
当(A - B)∈(0,π/2) 时,cos(A-B) = √[1-sin^2 (A-B)] = √[ 1 - ( 1/2)^2] = √3/2
当(A-B)∈(π/2,π)时,cos(A-B) = -√[1-sin^2 (A-B)] = -√[ 1 - ( 1/2)^2] = -√3/2
(cosA - sinB)^2 = cos^2 A - 2cosAsinB + sin^2 B = 16/25 (2)
(1)式 +(2)式得
(sin^2 A + cos^2 A) + ( sin^2 B + cos^2 B) + 2(sinAcosB -cosAsinB) = 1
sinAcosB - cosAsinB = sin(A-B)
即有: sin(A-B) = 1/2
所以 0 < A -B < π
当(A - B)∈(0,π/2) 时,cos(A-B) = √[1-sin^2 (A-B)] = √[ 1 - ( 1/2)^2] = √3/2
当(A-B)∈(π/2,π)时,cos(A-B) = -√[1-sin^2 (A-B)] = -√[ 1 - ( 1/2)^2] = -√3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询