相关系数矩阵表的结果如何分析呢???
EDI与EDI的相关系数为1,制类似的,矩阵对角线位置都是1。其余不相同的两个变量2113相关系数在-1到1之间,如EDI与HP的相关系数为0.261。
矩阵每行5261每列第二小行中4102的数是双边检验的值,由下面的注释知道,分为0.05,和0.01两种显著1653性水平。N是观测次数。
14*4的矩阵Y与一个21134*1的矩阵R相乘
Y=[y1,y2,y3,y4];%Y为14*4矩阵5261
R=[r1,r2,r3,r4]';%此处矩阵要转置成4*1矩阵
P=Y*R;
一般来说权重系数相加之和等于1,但这里可以不用等于1的,因为y1到4102y4都属于不同的类型,要反映到GDP上不必要权1653重之和为1。
扩展资料:
相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量。由于研究对象的不同,相关系数有如下几种定义方式。
简单相关系数:又叫相关系数或线性相关系数,一般用字母r 表示,用来度量两个变量间的线性关系。
【例】如果有若干个样品,每个样品有n个特征,则相关系数可以表示两个样品间的相似程度。借此,可以对样品的亲疏远近进行距离聚类。例如9个小麦品种(分别用A1,A2,...,A9表示)的6个性状资料见表2,作相关系数计算并检验。
由相关系数计算公式可计算出6个性状间的相关系数,分析及检验结果见表3。由表3可以看出,冬季分蘖与每穗粒数之间呈现负相关(ρ = − 0.8982),即麦冬季分蘖越多,那么每穗的小麦粒数越少,其他性状之间的关系不显著。
参考资料来源:百度百科-相关系数