求解,高一数学,
1个回答
展开全部
1:
最大值就是4,此时2x+π/3=2kπ+π/2
即:x=kπ+π/12(k∈Z)
2:
增区间,即:2x+π/3∈[2kπ-π/2,2kπ+π/2]
即:x∈[kπ-5π/12,kπ+π/12](k∈Z)
3:
对称轴,即2x+π/3=kπ+π/2
x=kπ/2+π/12(k∈Z)
对称中心,即2x+π/3=kπ
x=kπ/2-π/6(k∈Z)
最大值就是4,此时2x+π/3=2kπ+π/2
即:x=kπ+π/12(k∈Z)
2:
增区间,即:2x+π/3∈[2kπ-π/2,2kπ+π/2]
即:x∈[kπ-5π/12,kπ+π/12](k∈Z)
3:
对称轴,即2x+π/3=kπ+π/2
x=kπ/2+π/12(k∈Z)
对称中心,即2x+π/3=kπ
x=kπ/2-π/6(k∈Z)
更多追问追答
追问
计算过程
追答
1:
2x+π/3=2kπ+π/2
2x=2kπ+π/6
x=x=kπ+π/12(k∈Z)
2:
2x+π/3∈[2kπ-π/2,2kπ+π/2]
2x∈[2kπ-5π/6,2kπ+π/6]
x∈[kπ-5π/12,kπ+π/12](k∈Z)
3:
2x+π/3=kπ+π/2
2x=kπ+π/6
x=kπ/2+π/12(k∈Z)
2x+π/3=kπ
2x=kπ-π/3
x=kπ/2-π/6(k∈Z)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询