求定积分过程,谢谢!
展开全部
令√x=t,则x=t²,dx=2tdt
当x=0时,t=0;当x=1时,t=1
原定积分=∫<0,1>t/(1+t)*2tdt
=2∫t²/(1+t)dt
=2∫[(t²-1)+1]/(1+t)dt
=2{∫[(t+1)(t-1)/(1+t)]dt+∫[1/(1+t)]dt}
=2[∫(t-1)dt+ln(1+t)]
=2[(1/2)t²-t+ln(1+t)]
=[t²-2t+2ln(1+t)]|<0,1>
=(1-2+2ln2)-0
=2ln2-1
当x=0时,t=0;当x=1时,t=1
原定积分=∫<0,1>t/(1+t)*2tdt
=2∫t²/(1+t)dt
=2∫[(t²-1)+1]/(1+t)dt
=2{∫[(t+1)(t-1)/(1+t)]dt+∫[1/(1+t)]dt}
=2[∫(t-1)dt+ln(1+t)]
=2[(1/2)t²-t+ln(1+t)]
=[t²-2t+2ln(1+t)]|<0,1>
=(1-2+2ln2)-0
=2ln2-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询