xe^(x^2)的不定积分

滚雪球的秘密
高粉答主

2020-12-16 · 醉心答题,欢迎关注
知道大有可为答主
回答量:4152
采纳率:100%
帮助的人:111万
展开全部

xe^(x^2)的不定积分是1/2e^(x^2)+C。

解:

∫xe^(x^2)dx

=1/2∫e^(x^2)dx^2

=1/2e^(x^2)+C

所以xe^(x^2)的不定积分是1/2e^(x^2)+C。

扩展资料:

1、分部积分法的形式

(1)利用有些函数经一次或二次求微分后不变的性质来进行分部积分。

例:∫e^x*sinxdx=∫sinxde^x=e^x*sinx-∫e^xdsinx=e^x*sinx-∫e^x*cosxdx

=e^x*sinx-∫cosxde^x=e^x*sinx-e^x*cosx+∫e^xdcosx

=e^x*sinx-e^x*cosx-∫e^x*sinxdx

则2∫e^x*sinxdx=e^x*sinx-e^x*cosx,可得

∫e^x*sinxdx=1/2e^x*(sinx-cosx)+C

(2)通过对u(x)求微分后使其类型与v(x)的类型相同或相近。

(3)通过对u(x)求微分后,du=u'dx中的u'比u更加简洁。

例:∫x^2*e^xdx=∫x^2de^x=x^2*e^x-∫e^xdx^2=x^2*e^x-∫2x*e^xdx

例:∫xarctanxdx=∫arctanxd(1/2x^2)

=1/2x^2*arctanx-1/2∫x^2darctanx=1/2x^2*arctanx-1/2∫x^2/(1+x^2)dx

2、不定积分公式

∫mdx=mx+C、∫cosxdx=sinx+C、∫sinxdx=-cosx+C、∫e^xdx=e^x+C



shadowyym
2014-03-02 · TA获得超过1381个赞
知道小有建树答主
回答量:674
采纳率:0%
帮助的人:290万
展开全部
∫ x*e^(x^2) dx = 1/2* ∫ e^(x^2) d(x^2) = 1/2*e^(x^2)+C
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友ce8d01c
2014-03-02 · 知道合伙人教育行家
百度网友ce8d01c
知道合伙人教育行家
采纳数:20071 获赞数:87096
喜欢数学

向TA提问 私信TA
展开全部
∫xe^(x^2)dx
=1/2∫e^(x^2)dx^2
=1/2e^(x^2)+C
更多追问追答
追问
我是这样算的,∫xe^(x^2)dx=∫e^(x^2)d(x^2/2) 积分变量中的二分之一可以提到不定积分的前面么?
追答
你真奇怪,如果不提到前面怎么积分?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式