已知过抛物线y^2=2px(p>0)的焦点F的直线交抛物线于A(x1,y1),B(x2,y2)两点,求证(1)x1x2为定值

皮皮鬼0001
2014-03-30 · 经历曲折坎坷,一生平淡。
皮皮鬼0001
采纳数:38061 获赞数:137597

向TA提问 私信TA
展开全部
解由题知抛物线的交点为(p/2,0)
设过焦点的直线的斜率为k
当k不存在时,AB垂直x轴,即A(p/2,p),B(p/2,-p)
即x1x2=p/2×p/2=p^2/4
当k存在时
故焦点的直线为y=k(x-p/2)
由y=k(x-p/2)
与y^2=2px
联立消y得
k^2(x^2-px+p^2/4)=2px
即k^2x^2-(k^2p-2p)x+k^2p^2/4=0
由根与系数的关系知
x1x2=c/a=(k^2p^2/4)/k^2=p^2/4
故综上知x1x2=p^2/4
匿名用户
2014-03-30
展开全部
1)令直线斜率为k
有l: y=k(x-p/2)
联立 y^=2px
k^x^-(k^p+2p)x+k^p^/4=0
x1+x2= p+2p/k^
x1x2=p^/4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式