在锐角△ABC中,a、b、c分别为内角A、B、C所对的边,且满足向量m=(根号3,-2)与n=(a
,bsinA)互相垂直。(1)求角B大小(2)若a+c=5,且a>c,b=根号7,求向量AB*AC...
,bsinA)互相垂直。
(1)求角B大小
(2)若a+c=5,且a>c,b=根号7,求向量AB*AC 展开
(1)求角B大小
(2)若a+c=5,且a>c,b=根号7,求向量AB*AC 展开
1个回答
2014-05-31 · 知道合伙人软件行家
关注
展开全部
∵向量m=(2sinB,根号3),向量n=(2cos^2B/2-1,cos2B),
且m⊥n
∴m●n=0
即2sinB(2cos²B/2-1)+√3cos2B=0
∵2cos²B/2-1=cosB
∴2sinBcosB+√3cos2B=0
∴sin2B+√3cos2B=0
∴sin2B=-√3cos2B
∴tan2B=-√3
∵锐角△ABC中
∴2B=120º, B=60º
(2)
∵B=60º,b=2
根据余弦定理
b²=a²+c²-2accosB
∴4=a²+c²-ac
∵a²+c²≥2ac
∴4=a²+c²-ac≥ac
∴ac≤4
∴SΔABC=1/2acsinB=√3/4*ac≤√3
∴△ABC的面积最大值是√3
且m⊥n
∴m●n=0
即2sinB(2cos²B/2-1)+√3cos2B=0
∵2cos²B/2-1=cosB
∴2sinBcosB+√3cos2B=0
∴sin2B+√3cos2B=0
∴sin2B=-√3cos2B
∴tan2B=-√3
∵锐角△ABC中
∴2B=120º, B=60º
(2)
∵B=60º,b=2
根据余弦定理
b²=a²+c²-2accosB
∴4=a²+c²-ac
∵a²+c²≥2ac
∴4=a²+c²-ac≥ac
∴ac≤4
∴SΔABC=1/2acsinB=√3/4*ac≤√3
∴△ABC的面积最大值是√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询