已知数列{an}满足a1=1, a2=2,a(n+2)=(an+an+1)/2,n∈N* (1)令
已知数列{an}满足a1=1,a2=2,a(n+2)=(an+an+1)/2,n∈N*(1)令bn=a(n+1)-an,证明{bn}是等比数列。(2)求{an}的通项公式...
已知数列{an}满足a1=1, a2=2,a(n+2)=(an+an+1)/2,n∈N*
(1)令bn=a(n+1)-an,证明{bn}是等比数列。
(2)求{an}的通项公式 展开
(1)令bn=a(n+1)-an,证明{bn}是等比数列。
(2)求{an}的通项公式 展开
2014-06-18 · 知道合伙人软件行家
关注
展开全部
(1)a(n+2)=(an+a(n+1))/2
a(n+2)-a(n+1)=(an+a(n+1))/2-a(n+1)=-1/2(a(n+1)-an)
即b(n+1)=-1/2bn
所以{bn}为等比数列
(2)b1=a2-a1=1
所以bn=(-1/2)^(n-1)
a(n+1)=an+(-1/2)^(n-1)
an=a(n-1)+(-1/2)^(n-2)
……
a3=a2+(-1/2)
a2=a1+1
用累加法,得an=a1+1+(-1/2)+(-1/2)^2+...+(-1/2)^(n-2)
=1+[1-(-1/2)^(n-1)]/[1-(-1/2)]=5/3-2/3(-1/2)^(n-1)
a(n+2)-a(n+1)=(an+a(n+1))/2-a(n+1)=-1/2(a(n+1)-an)
即b(n+1)=-1/2bn
所以{bn}为等比数列
(2)b1=a2-a1=1
所以bn=(-1/2)^(n-1)
a(n+1)=an+(-1/2)^(n-1)
an=a(n-1)+(-1/2)^(n-2)
……
a3=a2+(-1/2)
a2=a1+1
用累加法,得an=a1+1+(-1/2)+(-1/2)^2+...+(-1/2)^(n-2)
=1+[1-(-1/2)^(n-1)]/[1-(-1/2)]=5/3-2/3(-1/2)^(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询