一道初中几何题,过程也要
展开全部
证明:连接DM、EM;DN、EN;
因为BD⊥AC,CE⊥AB
所以△BCD、△BCE、△AOD、△AOE都是直角三角形
因为BC 为Rt△BCD、Rt△BCE的斜边
且M为BC的中点
所以DM=1/2 BC EM=1/2 BC
即DM=EM
所以点M在DE的垂直平分线上(到线段两端距离相等的点,在这条线段的垂直平分线上)
同理: 因为AO为Rt△AOD、Rt△AOE的斜边
且N为AO的中点
所以DN=1/2 AO EN=1/2 AO
即DN=EN
所以点N 在DE的垂直平分线上(到线段两端距离相等的点,在这条线段的垂直平分线上)
那么:点M、N都在DE的垂直平分线上
即MN垂直平分DE
因为BD⊥AC,CE⊥AB
所以△BCD、△BCE、△AOD、△AOE都是直角三角形
因为BC 为Rt△BCD、Rt△BCE的斜边
且M为BC的中点
所以DM=1/2 BC EM=1/2 BC
即DM=EM
所以点M在DE的垂直平分线上(到线段两端距离相等的点,在这条线段的垂直平分线上)
同理: 因为AO为Rt△AOD、Rt△AOE的斜边
且N为AO的中点
所以DN=1/2 AO EN=1/2 AO
即DN=EN
所以点N 在DE的垂直平分线上(到线段两端距离相等的点,在这条线段的垂直平分线上)
那么:点M、N都在DE的垂直平分线上
即MN垂直平分DE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询