电磁波问题
1.关于介质极化和磁化,下列说法中正确的是。(A)在电磁场中,电介质极化使电介质内部的电场一定加强,磁介质磁化使磁介质内部磁场一定减弱;(B)在电磁场中,电介质极化使电介...
1. 关于介质极化和磁化,下列说法中正确的是 。
(A)在电磁场中,电介质极化使电介质内部的电场一定
加强,磁介质磁化使磁介质内部磁场一定减弱;
(B)在电磁场中,电介质极化使电介质内部的电场一定
减弱,磁介质磁化使磁介质内部磁场一定加强;
(C)在电磁场中,电介质极化使电介质内部的电场一定
加强,磁介质磁化使磁介质内部磁场不一定减弱;
(D)在电磁场中,电介质极化使电介质内部的电场一定
减弱,磁介质磁化使磁介质内部磁场不一定加强 展开
(A)在电磁场中,电介质极化使电介质内部的电场一定
加强,磁介质磁化使磁介质内部磁场一定减弱;
(B)在电磁场中,电介质极化使电介质内部的电场一定
减弱,磁介质磁化使磁介质内部磁场一定加强;
(C)在电磁场中,电介质极化使电介质内部的电场一定
加强,磁介质磁化使磁介质内部磁场不一定减弱;
(D)在电磁场中,电介质极化使电介质内部的电场一定
减弱,磁介质磁化使磁介质内部磁场不一定加强 展开
1个回答
展开全部
(1) 极化的概念
为了说明电磁波的场强方向的取向,接下来引入波的极化的概念.波的极化是指空间
固定点上场强方向随时间变化的方式,通常用电场强度矢量端点随着时间在空间描绘出的
轨迹来表示电磁波的极化,波的极化也叫波的偏振.前面介绍的均匀平面电磁波的电场强
度矢量端点在空间沿直线变化,画出的轨迹是一条直线,称此种波为线极化波.一般情况
下,对于沿z轴方向传播的均匀平面波,电场强度矢量应写成两个分量,其表达式为
kz
yx
kz
yxyx
yxEyExEyExEyExjj
m
j
m
j
00e)e^e^(e)^^(^^ +=+=+= E (5-4-1)
两个分量写成瞬时值为
+ =
+ =
)cos(
)cos(
m
m
yyy
xxx
kztEE
kztEE
ω
ω
(5-4-2)
此时合成矢量E随时间变化的矢量端点轨迹就不一定是一条直线,有可能是一个椭圆,也
有可能是一个圆,也就是说波的极化不一定是直线极化.对于按正弦规律变化的电磁波,
波的极化可分为直线极化,圆极化及椭圆极化三种.
(2) 平面电磁波的极化方式
① 直线极化
当电场的两个分量没有相位差(同相)或相位差o180(反相)时,合成电场矢量是直线极
化.
先讨论同相的情况,即yxkztkzt ω ω+ =+ ,也就是0 ==yx,则合成电磁
波的电场强度矢量的模为
)cos(0
2
m
2
m
22 ω+ +=+=kztEEEEEyxyx (5-4-3)
电场强度矢量与x轴正向夹角θ的正切为
===
m
mtan
x
y
x
y
E
E
E
E
θ常数 (5-4-4)
即=θ常数.如图5-4-1(a)所示(图中取0=z),虽然电场矢量E的大小随时间作正弦变化,
但其矢端轨迹是一条直线,故称为线极化(Linear Polarization).因此直线位于一,三象限,
所以也称为一,三象限线极化.
同理反相时,有π ±= yx,= ==
m
mtan
x
y
x
y
E
E
E
E
θ常数,如图5-4-1(b)所示,矢端
轨迹也是一条直线,不过此直线位于二,四象限,为二,四象限线极化.
- 2 - 电磁场与微波技术
当mmxyEE=时,
4
π
θ=(同相)或
4
3π
(反相);如果0=yE,则0=θ,电场E只有xE
分量,称E为x轴取向的线性极化波;如果0=xE,则
2
π
θ=,电场E只有yE分量,称E
为y轴取向的线性极化波.
对于时谐变电磁场的线极化波,某一时刻,在沿着传播方向的某一直线上各点的电场
强度矢量端点的轨迹如图5-4-2所示,此即线极化波的波形.
② 圆极化
当电场的两个分量振幅相等,相位相差
2
π
±时,合成的电场矢量端点的轨迹为一个圆,
称这样的波为圆极化波.
设mmmEEEyx==,
2
π
±= yx,0=z,则
)cos(mxxtEE ω+=,)sin()
2
cos(mmxxytEtEE ω
π
ω+±=+=m (5-4-5)
消去t得2
m
22EEEyx=+,此为圆心在原点,半径为mE的圆方程.合成电磁波的电场强度矢
量E的模及与x轴正向夹角θ分别为
m
22||EEEyx=+=E,)(
)(
)sin(
arctanx
x
xt
t
t
ω
ω
ω
θ+±=
+
+±
= (5-4-6)
可见E的大小不随时间变化,而E与x轴正向夹角θ随时间变化.因此合成电场强度矢量
的矢端轨迹为圆,称为圆极化(Circular Polarization).
由于θ的变化方式有两种,即θ以角速度ω随时间线性增加或线性减小,因此E矢端
沿圆轨迹的旋转方向不一样.如果
)(xt ωθ++=,如图5-4-3(a)所
示,电场矢量端点将以角速度ω
在xOy平面上沿逆时针方向作等
角速旋转.此时
2
π
= yx,即
xE的相位比yE超前
2
π,θ取正
值,并随时间的增加而增加.电场旋转方向与传播方向(此处为z+方向)符合右手定则,称
此情况为右旋圆极化.如果)(xt ωθ+ =,如图5-4-3(b)所示,E将以角速度ω在xOy平
图5-4-1 线极化
y
x O
θ
y
z=0
(a) 一,三象限线极化
Exm
Eym E
O
Exm
Eym
x
(b) 二,四象限线极化
z=0Eθ
y
xO
x
(a) 右旋圆极化
Ex
Ey
Eθ
ω
y
xO x
(b) 左旋圆极化
Ex
Ey
E θ ω
图5-4-3 圆极化
O
y
x
z图5-4-2 线极化波波形
某一时刻z轴上各点电场矢量的端点轨迹
电磁场与微波技术 - 3 -
面上沿顺时针方向作等角速旋转,此时
2
π
= yx,即xE的相位比yE滞后
2
π,θ取负
值,并随时间的增加而减小,电场旋转方向与传播方向符合左手螺旋关系,称此情况为左
旋圆极化[1].具体判断时也可按如下方式进行:将右手大姆指指向电磁波的传播方向,其余
四指指向电场强度E的矢端并旋转,若与E的旋转一致,则为右旋圆极化波;若与E的旋
转相反,则为左旋圆极化波.
对于圆极化平面波,某一时刻,在沿着传
播方向的某一直线上各点的电场强度矢量端
点的轨迹如图5-4-4所示,此即圆极化波的波
形,此波形为螺旋形,螺旋天线就可以辐射这
样的电磁波.
③ 椭圆极化
如果xE和yE的振幅和相位为除①和②以外的任意数值,则合成电场矢量端点的轨迹
为椭圆,称这样的波为椭圆极化波.
取0=z,消去式(5-4-2)中的t,得
2
2
mmm
2
m
sincos
2
=
+
y
y
yx
yx
x
x
E
E
EE
EE
E
E
(5-4-7)
式中yx =.该式表示以xE和yE为变量的椭圆方程,
如图5-4-5所示.
该椭圆的中心在坐标原点,当
2
π
±= =yx时,椭
圆的长短轴在坐标轴上,当
2
π
±≠ =yx时,则长短轴
不在坐标轴上.根据左,右旋的定义,可知当π < 时为右旋椭圆极化,当0< < yx π时,为左旋椭圆极化.此时旋转的角速度不能简
单地认为还是常数ω,而是时间的函数.
通常用椭圆极化角和椭圆率这两个参量来表示椭圆极化特性.定义椭圆极化角为椭圆
长轴与x轴所夹的角,用θ表示,可以求得
2
m
2
m
mmcos2
2tan
yx
yx
EE
EE
=
θ (5-4-8)
定义椭圆率为椭圆短轴与长轴之比,用ρ表示,即
长轴短轴
=ρ
由定义可知极化角θ表示了椭圆的取向,椭圆率表示出了椭圆是扁的还是趋向于圆的,若
1→ρ则椭圆趋向于圆,若0→ρ则椭圆趋向于直线.其实直线极化与圆极化只是椭圆极
[6] 有关左,右旋的定义并不统一,在阅读有关参考书时须注意.这里采用IRE标准,此标准规定:观察
者顺着波传播方向看去,电场矢量在横截面内的旋转方向为顺时针,则定为右旋极化,反之则为左旋极化.
y
x O Ex
Ey
E
θ
图5-4-5 椭圆极化
z
x
y
ω
O
图5-4-4 圆极化波波形(右旋)
- 4 - 电磁场与微波技术
化的一种特例.
前面讨论的不同极化(偏振)可看作若干个具有同传播方向同频率的平面电磁波合成的
结果.若场矢量具有任意的取向,任意的振幅和杂乱的相位,则合成波将是杂乱的.
圆极化波在雷达,导航,制导,通信和电视广播上被广泛采用.因为一个线极化波可
以分解为两个振幅相等,旋向相反的圆极化波,一个椭圆极化波可以分解成两个不等幅的,
旋向相反的圆极化波.用圆极化天线来接收信号的话,不管发射的极化方式如何肯定能收
到信号,不会出现失控的情况.
例5-4-1 判断下列平面电磁波的极化方式
(1) )
4
sin(4^)
4
cos(3^
π
βω
π
βω+ + =xtzxtyE
(2) kzyxEj
0e)^j^( + =E
(3) kyzxEj
0e)^j2^( +=E
(4) yzx)120j01.0(e)25^j25^(+ + =E
解 (1) )
4
cos(3
π
βω =xtEy,)
4
cos(4)
4
sin(4
π
βω
π
βω =+ =xtxtEz,波
沿x轴正向传播,
4
π
==zy,xE与yE同相,所以波为一,三象限的直线极化波.
(2) 此为复数形式,由于2
j
j2
j
0
j
0ee)^e^(e)^^(jj
ππ
kzkzyxEyxE +=+=E,可以看出xE
和yE振幅相等,且xE相位超前yE相位
2
π
,电磁波沿z+方向传播,故为右旋圆极化波.
(3) ykzxEj2
j
0e)e^2^( +=
π
E,zE相位比xE超前
2
π
,振幅
不相等,所以为椭圆极化,又从ykje 可知波沿y+方向传播,所
以E的旋转方向如图5-4-6所示,可见此电磁波为右旋椭圆极化
波.
(4) yyzx120j2
j
01.0e)^e^(e25
+=
π
E,在空间固定点,xE与zE振幅相等,且zE相位
比xE超前
2
π
,波沿y+方向传播,所以此波为右旋圆极化波.顺便提一下,y01.0e 在此表
明波沿y+方向衰减程度.
5.4.2 色散与群速
我们熟知,当一束太阳光射到三棱镜上时,在三棱镜的另一边就可看到红,橙,黄,
绿,蓝,靛,紫的彩色光,这就是光谱段电磁波的色散现象,原因是由于不同频率的单色
光在同一媒质中具有不同的折射率(即具胡不同的相速度)所导致的.
媒质的色散是由于媒质的参数ε, 和σ与频率有关.理想媒质其参数不随频率而变,
则称是非色散媒质.如果是有耗媒质,在交变电磁场情况下,媒质的带电粒子的运动跟不
上交变场的变化而产生滞后现象,此时要引入复介电常数,此复介电常数与频率有关,所
以有耗媒质有色散特性.当交变电磁场的频率接近于媒质的固有频率时,带电粒子将从交
y
x
O
E
图5-4-6 例5-4-1(3)用图
z
ω
电磁场与微波技术 - 5 -
变场中吸收能量而造成散射损耗.
波的色散是指波的相速与频率有关.在有耗媒质中的电磁波,相速与频率有关,所以
其中传播的电磁波必然要发生色散.由于
ε β
ω1
p==v,波的相速度只取决于媒质的参
数ε和 ,因此对于理想媒质波的相速与频率无关.对于非理想媒质,介电常数ε是频率ω
的函数,β为ω的复杂函数,在这种情况下相速pv与频率有关.如良导体中的相速为
σ
ω
β
ω2
p==v.引起波的色散的原因是多方面的,这里讨论的是由于媒质的色散引起波
的色散.要了解更详细的介绍请读者自行查阅有关参考书.
当包含不同频率的信号加到电磁波载体上时,如果信号所包含的各频率分量相速不等,
那么信号传播一段距离后,信号各分量合成的波形将与起始时的波形不同,引起信号的波
形失真,称这种失真为色散失真.图5-4-7表示矩形脉冲波(可利用傅里叶展开将其表示为
无数不同频率正弦波的叠加)经过光纤长距离传输后因色散而畸变为钟形波(各种不同频率
正弦波叠加后不再是矩形脉冲波).光脉冲变宽后有可能使接收端的前后两个脉冲无法分辨.
场强表达式以)cos(^
0kztEx =ωE形式表示的平面波是在时间,空间上无限延伸的单
一频率的电磁波,称之为单色波,一个单一
频率的正弦电磁波不能传播信号,并且理想
的单频正弦电磁波实际上是不存在的,信号
加到电磁波上就不再是单色波.实际工程中
的电磁波在时间和空间上是有限的,它由不
同频率的正弦波(谐波)叠加而成,称为非单
色波,是以某种频率0ω为载波频率的有狭
窄频带ω 的波,称为波包,如图5-4-8所
示,这是按正弦变化的调制波,虚线为信号的包络,此包络移动的相速度称为群速,用gv表
示,从图可以看出gv与相速度pv是不一样的概念.pv是信号等相位面的速度,而gv是包
络波等相位点推进的速度.由于群速是波的包络上一个点的传播速度,对于频谱很宽的信
号,其包络在传播过程中发生畸变,即包络形状将随波的传播而变化,此时群速已无意义,
所以群速只对窄频带信号有意义.
对于窄频带信号(ωω <<)群速的表达式为
β
ω
d
d
g=v (5-4-9)
图5-4-7 矩形脉冲波经过光纤传输后变成钟形波
图5-4-8 相速与群速
O
vp(波的运动) vg(包络运动)
- 6 - 电磁场与微波技术
而相速
β
ω
=pv,相速与群速之间的大小关系由相速随频率的变化关系决定.可以证明,当
相速不随频率变化时,即0
d
dp=
ω
v
,则pgvv=,群速等于相速,此时的媒质为非色散媒质;
当0
d
dp<
ω
v
时,pgvv
ω
v
时,pgvv>,
即群速大于相速,称此种情况为反常色散,导体中的色散就是反常色散.可以对正常色散
及反常色散现象加以利用,使其相互补偿,从而改善相位频率特性.
为了说明电磁波的场强方向的取向,接下来引入波的极化的概念.波的极化是指空间
固定点上场强方向随时间变化的方式,通常用电场强度矢量端点随着时间在空间描绘出的
轨迹来表示电磁波的极化,波的极化也叫波的偏振.前面介绍的均匀平面电磁波的电场强
度矢量端点在空间沿直线变化,画出的轨迹是一条直线,称此种波为线极化波.一般情况
下,对于沿z轴方向传播的均匀平面波,电场强度矢量应写成两个分量,其表达式为
kz
yx
kz
yxyx
yxEyExEyExEyExjj
m
j
m
j
00e)e^e^(e)^^(^^ +=+=+= E (5-4-1)
两个分量写成瞬时值为
+ =
+ =
)cos(
)cos(
m
m
yyy
xxx
kztEE
kztEE
ω
ω
(5-4-2)
此时合成矢量E随时间变化的矢量端点轨迹就不一定是一条直线,有可能是一个椭圆,也
有可能是一个圆,也就是说波的极化不一定是直线极化.对于按正弦规律变化的电磁波,
波的极化可分为直线极化,圆极化及椭圆极化三种.
(2) 平面电磁波的极化方式
① 直线极化
当电场的两个分量没有相位差(同相)或相位差o180(反相)时,合成电场矢量是直线极
化.
先讨论同相的情况,即yxkztkzt ω ω+ =+ ,也就是0 ==yx,则合成电磁
波的电场强度矢量的模为
)cos(0
2
m
2
m
22 ω+ +=+=kztEEEEEyxyx (5-4-3)
电场强度矢量与x轴正向夹角θ的正切为
===
m
mtan
x
y
x
y
E
E
E
E
θ常数 (5-4-4)
即=θ常数.如图5-4-1(a)所示(图中取0=z),虽然电场矢量E的大小随时间作正弦变化,
但其矢端轨迹是一条直线,故称为线极化(Linear Polarization).因此直线位于一,三象限,
所以也称为一,三象限线极化.
同理反相时,有π ±= yx,= ==
m
mtan
x
y
x
y
E
E
E
E
θ常数,如图5-4-1(b)所示,矢端
轨迹也是一条直线,不过此直线位于二,四象限,为二,四象限线极化.
- 2 - 电磁场与微波技术
当mmxyEE=时,
4
π
θ=(同相)或
4
3π
(反相);如果0=yE,则0=θ,电场E只有xE
分量,称E为x轴取向的线性极化波;如果0=xE,则
2
π
θ=,电场E只有yE分量,称E
为y轴取向的线性极化波.
对于时谐变电磁场的线极化波,某一时刻,在沿着传播方向的某一直线上各点的电场
强度矢量端点的轨迹如图5-4-2所示,此即线极化波的波形.
② 圆极化
当电场的两个分量振幅相等,相位相差
2
π
±时,合成的电场矢量端点的轨迹为一个圆,
称这样的波为圆极化波.
设mmmEEEyx==,
2
π
±= yx,0=z,则
)cos(mxxtEE ω+=,)sin()
2
cos(mmxxytEtEE ω
π
ω+±=+=m (5-4-5)
消去t得2
m
22EEEyx=+,此为圆心在原点,半径为mE的圆方程.合成电磁波的电场强度矢
量E的模及与x轴正向夹角θ分别为
m
22||EEEyx=+=E,)(
)(
)sin(
arctanx
x
xt
t
t
ω
ω
ω
θ+±=
+
+±
= (5-4-6)
可见E的大小不随时间变化,而E与x轴正向夹角θ随时间变化.因此合成电场强度矢量
的矢端轨迹为圆,称为圆极化(Circular Polarization).
由于θ的变化方式有两种,即θ以角速度ω随时间线性增加或线性减小,因此E矢端
沿圆轨迹的旋转方向不一样.如果
)(xt ωθ++=,如图5-4-3(a)所
示,电场矢量端点将以角速度ω
在xOy平面上沿逆时针方向作等
角速旋转.此时
2
π
= yx,即
xE的相位比yE超前
2
π,θ取正
值,并随时间的增加而增加.电场旋转方向与传播方向(此处为z+方向)符合右手定则,称
此情况为右旋圆极化.如果)(xt ωθ+ =,如图5-4-3(b)所示,E将以角速度ω在xOy平
图5-4-1 线极化
y
x O
θ
y
z=0
(a) 一,三象限线极化
Exm
Eym E
O
Exm
Eym
x
(b) 二,四象限线极化
z=0Eθ
y
xO
x
(a) 右旋圆极化
Ex
Ey
Eθ
ω
y
xO x
(b) 左旋圆极化
Ex
Ey
E θ ω
图5-4-3 圆极化
O
y
x
z图5-4-2 线极化波波形
某一时刻z轴上各点电场矢量的端点轨迹
电磁场与微波技术 - 3 -
面上沿顺时针方向作等角速旋转,此时
2
π
= yx,即xE的相位比yE滞后
2
π,θ取负
值,并随时间的增加而减小,电场旋转方向与传播方向符合左手螺旋关系,称此情况为左
旋圆极化[1].具体判断时也可按如下方式进行:将右手大姆指指向电磁波的传播方向,其余
四指指向电场强度E的矢端并旋转,若与E的旋转一致,则为右旋圆极化波;若与E的旋
转相反,则为左旋圆极化波.
对于圆极化平面波,某一时刻,在沿着传
播方向的某一直线上各点的电场强度矢量端
点的轨迹如图5-4-4所示,此即圆极化波的波
形,此波形为螺旋形,螺旋天线就可以辐射这
样的电磁波.
③ 椭圆极化
如果xE和yE的振幅和相位为除①和②以外的任意数值,则合成电场矢量端点的轨迹
为椭圆,称这样的波为椭圆极化波.
取0=z,消去式(5-4-2)中的t,得
2
2
mmm
2
m
sincos
2
=
+
y
y
yx
yx
x
x
E
E
EE
EE
E
E
(5-4-7)
式中yx =.该式表示以xE和yE为变量的椭圆方程,
如图5-4-5所示.
该椭圆的中心在坐标原点,当
2
π
±= =yx时,椭
圆的长短轴在坐标轴上,当
2
π
±≠ =yx时,则长短轴
不在坐标轴上.根据左,右旋的定义,可知当π < 时为右旋椭圆极化,当0< < yx π时,为左旋椭圆极化.此时旋转的角速度不能简
单地认为还是常数ω,而是时间的函数.
通常用椭圆极化角和椭圆率这两个参量来表示椭圆极化特性.定义椭圆极化角为椭圆
长轴与x轴所夹的角,用θ表示,可以求得
2
m
2
m
mmcos2
2tan
yx
yx
EE
EE
=
θ (5-4-8)
定义椭圆率为椭圆短轴与长轴之比,用ρ表示,即
长轴短轴
=ρ
由定义可知极化角θ表示了椭圆的取向,椭圆率表示出了椭圆是扁的还是趋向于圆的,若
1→ρ则椭圆趋向于圆,若0→ρ则椭圆趋向于直线.其实直线极化与圆极化只是椭圆极
[6] 有关左,右旋的定义并不统一,在阅读有关参考书时须注意.这里采用IRE标准,此标准规定:观察
者顺着波传播方向看去,电场矢量在横截面内的旋转方向为顺时针,则定为右旋极化,反之则为左旋极化.
y
x O Ex
Ey
E
θ
图5-4-5 椭圆极化
z
x
y
ω
O
图5-4-4 圆极化波波形(右旋)
- 4 - 电磁场与微波技术
化的一种特例.
前面讨论的不同极化(偏振)可看作若干个具有同传播方向同频率的平面电磁波合成的
结果.若场矢量具有任意的取向,任意的振幅和杂乱的相位,则合成波将是杂乱的.
圆极化波在雷达,导航,制导,通信和电视广播上被广泛采用.因为一个线极化波可
以分解为两个振幅相等,旋向相反的圆极化波,一个椭圆极化波可以分解成两个不等幅的,
旋向相反的圆极化波.用圆极化天线来接收信号的话,不管发射的极化方式如何肯定能收
到信号,不会出现失控的情况.
例5-4-1 判断下列平面电磁波的极化方式
(1) )
4
sin(4^)
4
cos(3^
π
βω
π
βω+ + =xtzxtyE
(2) kzyxEj
0e)^j^( + =E
(3) kyzxEj
0e)^j2^( +=E
(4) yzx)120j01.0(e)25^j25^(+ + =E
解 (1) )
4
cos(3
π
βω =xtEy,)
4
cos(4)
4
sin(4
π
βω
π
βω =+ =xtxtEz,波
沿x轴正向传播,
4
π
==zy,xE与yE同相,所以波为一,三象限的直线极化波.
(2) 此为复数形式,由于2
j
j2
j
0
j
0ee)^e^(e)^^(jj
ππ
kzkzyxEyxE +=+=E,可以看出xE
和yE振幅相等,且xE相位超前yE相位
2
π
,电磁波沿z+方向传播,故为右旋圆极化波.
(3) ykzxEj2
j
0e)e^2^( +=
π
E,zE相位比xE超前
2
π
,振幅
不相等,所以为椭圆极化,又从ykje 可知波沿y+方向传播,所
以E的旋转方向如图5-4-6所示,可见此电磁波为右旋椭圆极化
波.
(4) yyzx120j2
j
01.0e)^e^(e25
+=
π
E,在空间固定点,xE与zE振幅相等,且zE相位
比xE超前
2
π
,波沿y+方向传播,所以此波为右旋圆极化波.顺便提一下,y01.0e 在此表
明波沿y+方向衰减程度.
5.4.2 色散与群速
我们熟知,当一束太阳光射到三棱镜上时,在三棱镜的另一边就可看到红,橙,黄,
绿,蓝,靛,紫的彩色光,这就是光谱段电磁波的色散现象,原因是由于不同频率的单色
光在同一媒质中具有不同的折射率(即具胡不同的相速度)所导致的.
媒质的色散是由于媒质的参数ε, 和σ与频率有关.理想媒质其参数不随频率而变,
则称是非色散媒质.如果是有耗媒质,在交变电磁场情况下,媒质的带电粒子的运动跟不
上交变场的变化而产生滞后现象,此时要引入复介电常数,此复介电常数与频率有关,所
以有耗媒质有色散特性.当交变电磁场的频率接近于媒质的固有频率时,带电粒子将从交
y
x
O
E
图5-4-6 例5-4-1(3)用图
z
ω
电磁场与微波技术 - 5 -
变场中吸收能量而造成散射损耗.
波的色散是指波的相速与频率有关.在有耗媒质中的电磁波,相速与频率有关,所以
其中传播的电磁波必然要发生色散.由于
ε β
ω1
p==v,波的相速度只取决于媒质的参
数ε和 ,因此对于理想媒质波的相速与频率无关.对于非理想媒质,介电常数ε是频率ω
的函数,β为ω的复杂函数,在这种情况下相速pv与频率有关.如良导体中的相速为
σ
ω
β
ω2
p==v.引起波的色散的原因是多方面的,这里讨论的是由于媒质的色散引起波
的色散.要了解更详细的介绍请读者自行查阅有关参考书.
当包含不同频率的信号加到电磁波载体上时,如果信号所包含的各频率分量相速不等,
那么信号传播一段距离后,信号各分量合成的波形将与起始时的波形不同,引起信号的波
形失真,称这种失真为色散失真.图5-4-7表示矩形脉冲波(可利用傅里叶展开将其表示为
无数不同频率正弦波的叠加)经过光纤长距离传输后因色散而畸变为钟形波(各种不同频率
正弦波叠加后不再是矩形脉冲波).光脉冲变宽后有可能使接收端的前后两个脉冲无法分辨.
场强表达式以)cos(^
0kztEx =ωE形式表示的平面波是在时间,空间上无限延伸的单
一频率的电磁波,称之为单色波,一个单一
频率的正弦电磁波不能传播信号,并且理想
的单频正弦电磁波实际上是不存在的,信号
加到电磁波上就不再是单色波.实际工程中
的电磁波在时间和空间上是有限的,它由不
同频率的正弦波(谐波)叠加而成,称为非单
色波,是以某种频率0ω为载波频率的有狭
窄频带ω 的波,称为波包,如图5-4-8所
示,这是按正弦变化的调制波,虚线为信号的包络,此包络移动的相速度称为群速,用gv表
示,从图可以看出gv与相速度pv是不一样的概念.pv是信号等相位面的速度,而gv是包
络波等相位点推进的速度.由于群速是波的包络上一个点的传播速度,对于频谱很宽的信
号,其包络在传播过程中发生畸变,即包络形状将随波的传播而变化,此时群速已无意义,
所以群速只对窄频带信号有意义.
对于窄频带信号(ωω <<)群速的表达式为
β
ω
d
d
g=v (5-4-9)
图5-4-7 矩形脉冲波经过光纤传输后变成钟形波
图5-4-8 相速与群速
O
vp(波的运动) vg(包络运动)
- 6 - 电磁场与微波技术
而相速
β
ω
=pv,相速与群速之间的大小关系由相速随频率的变化关系决定.可以证明,当
相速不随频率变化时,即0
d
dp=
ω
v
,则pgvv=,群速等于相速,此时的媒质为非色散媒质;
当0
d
dp<
ω
v
时,pgvv
ω
v
时,pgvv>,
即群速大于相速,称此种情况为反常色散,导体中的色散就是反常色散.可以对正常色散
及反常色散现象加以利用,使其相互补偿,从而改善相位频率特性.
北京航源高科科技有限公司_
2024-11-26 广告
2024-11-26 广告
电磁炮线圈是北京航源高科科技有限公司在电磁发射技术领域的重要组件。它采用高性能材料精密绕制而成,具有优异的电磁转换效率和稳定性。作为电磁炮发射系统的关键部分,线圈在瞬间产生强大的磁场,为弹丸提供高速发射所需的巨大能量。我们致力于线圈技术的研...
点击进入详情页
本回答由北京航源高科科技有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询