arctanx和x为什么是等价无穷小

 我来答
白雪忘冬
高粉答主

2019-05-28 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376631

向TA提问 私信TA
展开全部

X→0时,arctanx~X

令arctanx=y,x=tany,x趋于0时,y趋于0,因此 lim arctanx/x=lim y/tany=lim ycosy/siny =lim cosy/(siny/y)=1。即arctanx~x。

无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。无穷小量即以数0为极限的变量,无限接近于0。

确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。

扩展资料

相关性质:

1、无穷小量不是一个数,它是一个变量。

2、零可以作为无穷小量的唯一一个常量

3、无穷小量与自变量的趋势相关。

4、有限个无穷小量之和仍是无穷小量。

5、有限个无穷小量之积仍是无穷小量。

6、有界函数与无穷小量之积为无穷小量。

7、特别地,常数和无穷小量的乘积也为无穷小量。

8、恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。

舒仕福
2023-07-11 广告
eor有以下两种含义:1. eor是计算机术语,表示二进制异或运算。在计算机逻辑运算中,算术逻辑执行二进制按位异或运算,两数执行异或后相同位结果为0,不同位结果为1。2. eor也表示在任何时期,向地层中注入流体、能量,以提高产量或采收率的... 点击进入详情页
本回答由舒仕福提供
小小芝麻大大梦
高粉答主

2019-05-02 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:995万
展开全部

X→0时,arctanx~X。

令arctanx=y,x=tany,x趋于0时,y趋于0,因此 lim arctanx/x=lim y/tany=lim ycosy/siny =lim cosy/(siny/y)=1。即arctanx~x。

等价无穷小在求极限时有重要应用,定理如下:

设在x的某一变化过程中,α和β都是无穷小,且α~α‘,β~β’, 存在(或为正无穷)。

则:lim a/b=lim a'/b'

等价无穷小是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。等价无穷小也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。

等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。

求极限时,使用等价无穷小的条件:

(1)被代换的量,在取极限的时候极限值为0;

(2)被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

扩展资料:

当x→0时,等价无穷小:

(1)sinx~x 

(2)tanx~x 

(3)arcsinx~x 

(4)arctanx~x 

(5)1-cosx~1/2x^2 

(6)a^x-1~xlna 

(7)e^x-1~x 

(8)ln(1+x)~x 

(9)(1+Bx)^a-1~aBx 

(10)[(1+x)^1/n]-1~1/nx 

(11)loga(1+x)~x/lna

无穷小的性质:

(1)无穷小量不是一个数,它是一个变量。

(2)零可以作为无穷小量的唯一一个常量。

(3)无穷小量与自变量的趋势相关。

(4)有限个无穷小量之和仍是无穷小量。

(5)有限个无穷小量之积仍是无穷小量。

(6)有界函数与无穷小量之积为无穷小量。

(7)恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
蔷祀
高粉答主

2019-05-21 · 关注我不会让你失望
知道小有建树答主
回答量:552
采纳率:100%
帮助的人:15.3万
展开全部

X→0时,arctanx~X

令arctanx=y,x=tany,x趋于0时,y趋于0,因此 lim arctanx/x=lim y/tany=lim ycosy/siny =lim cosy/(siny/y)=1。即arctanx~x。

扩展资料

使用等价无穷小的条件  :

①被代换的量,在取极限的时候极限值为0;

②被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

无穷小的比较方法:

设α、β是某一极限过程中的两个无穷小,若 limβ/α=c(c为常数) 则(1)当c ≠ 0时,称在此极限过程中β与α是同阶无穷小;

(2)当c = 0时,称在此极限过程中β是α的高阶无穷小,记作β=o(α);   

(3)当c = 1时,称在此极限过程中β与α是等价无穷小,记作β~α。

参考资料来源:百度百科-  等价无穷小

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
孤翼之泪
2015-02-05 · TA获得超过2299个赞
知道小有建树答主
回答量:650
采纳率:0%
帮助的人:518万
展开全部
当x趋向于0的时候,limarctanx/x=lim<x->0>1/(1+x²)=1,根据等价无穷小的定义,因此,当x趋向于0的时候,arctanx与x是等价无穷小,有疑问请追问,满意请采纳~\(≧▽≦)/~
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
琉璃易碎smile
推荐于2017-09-19 · TA获得超过1.6万个赞
知道大有可为答主
回答量:4789
采纳率:92%
帮助的人:323万
展开全部
X→0时,arctanx~X
令arctanx=y,x=tany,x趋于0时,y趋于0,因此 lim arctanx/x=lim y/tany=lim ycosy/siny =lim cosy/(siny/y)=1。即arctanx~x
等价无穷小在求极限时有重要应用,定理如下:
设在x的某一变化过程中,α和β都是无穷小,且α~α‘,β~β’, 存在(或为正无穷),
则:lim a/b=lim a'/b'
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(7)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式