如图,正方形ABCD的边长为1,点F在线段CD上运动,AE平分∠BAF交BC边于点E.(1)求证:AF=DF+BE.(2)设

如图,正方形ABCD的边长为1,点F在线段CD上运动,AE平分∠BAF交BC边于点E.(1)求证:AF=DF+BE.(2)设DF=x(0≤x≤1),△ADF与△ABE的面... 如图,正方形ABCD的边长为1,点F在线段CD上运动,AE平分∠BAF交BC边于点E.(1)求证:AF=DF+BE.(2)设DF=x(0≤x≤1),△ADF与△ABE的面积和S是否存在最大值?若存在,求出此时x的值及S.若不存在,请说明理由. 展开
 我来答
凌厉小寇TA井
推荐于2016-04-24 · 超过64用户采纳过TA的回答
知道答主
回答量:111
采纳率:100%
帮助的人:118万
展开全部
解:(1)证明:如图,
延长CB至点G,使得BG=DF,连接AG.因为ABCD是正方形,所以在Rt△ADF和Rt△ABG中,AD=AB,∠ADF=∠ABG=90°,DF=BG.
∴Rt△ADF≌Rt△ABG(SAS),
∴AF=AG,∠DAF=∠BAG.
又∵AE是∠BAF的平分线
∴∠EAF=∠BAE,
∴∠DAF+∠EAF=∠BAG+∠BAE即∠EAD=∠GAE.
∵AD∥BC,
∴∠GEA=∠EAD,
∴∠GEA=∠GAE,
∴AG=GE.
即AG=BG+BE.
∴AF=DF+BE,得证.

(2)S=S△ADF+S△ABE=
1
2
DF?AD+
1
2
BE?AB

∵AD=AB=1,
S=
1
2
(DF+BE)

由(1)知,AF=DF+BE,所以S=
1
2
AF

在Rt△ADF中,AD=1,DF=x,
AF=
x2+1

S=
1
2
x2+1

由上式可知,当x2达到最大值时,S最大.而0≤x≤1,
所以,当x=1时,S最大值为
1
2
x2+1
=
1
2
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式