如图1,在矩形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿A→B→C→D路线运动,到D点停止;点Q从D点出发
如图1,在矩形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿A→B→C→D路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点...
如图1,在矩形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿A→B→C→D路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm).如图2是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图3是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.根据图象:(1)求a、b、c的值;(2)设点P出发x(秒)后离开点A的路程为y(cm),请写出y与x的函数关系式,并求出点P与Q相遇时x的值.
展开
1个回答
展开全部
(1)观察图象得,S△APQ=
PA?AD=
×(1×a)×6=24,
解得a=8(秒)
b=
=2(厘米/秒)
(22-8)c=(12×2+6)-2×8
解得c=1(厘米/秒)
(2)依题意得:y=1×8+2(x-8),即y=2x-8(x>8).
设点Q到点A还需要走的路程为y′(cm),则
y′=(30-2×8)-1×(x-8)
=22-x(x>8)
又据题意,当y=y′时,P与Q相遇,即
2x-8=22-x,
解得x=10(秒)
∴出发10秒时,P与Q相遇.
1 |
2 |
1 |
2 |
解得a=8(秒)
b=
12-1×8 |
10-8 |
(22-8)c=(12×2+6)-2×8
解得c=1(厘米/秒)
(2)依题意得:y=1×8+2(x-8),即y=2x-8(x>8).
设点Q到点A还需要走的路程为y′(cm),则
y′=(30-2×8)-1×(x-8)
=22-x(x>8)
又据题意,当y=y′时,P与Q相遇,即
2x-8=22-x,
解得x=10(秒)
∴出发10秒时,P与Q相遇.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询