这题怎么做啊~~~~~
1个回答
展开全部
⑴垂径定理及角平分线判定定理。
过O作OM⊥AB,作ON⊥CD,
∵弧AB=弧CD,∴AB=CD,
∴OM=ON(相等的弦所对的弦心距相等),
∴O在∠EPF的角平分线上(到角两边距离相等的点在这个角的平分线上)。
⑵连接OB、OD、OP,
∵OB=OD,PB=PD,PO=PO,
∴ΔPOB≌ΔPOD,
∴∠DPO=∠BPO,
又OM⊥AB,ON⊥CD,
∴AB=CD(相等的弦心距所对的弦相等)
过O作OM⊥AB,作ON⊥CD,
∵弧AB=弧CD,∴AB=CD,
∴OM=ON(相等的弦所对的弦心距相等),
∴O在∠EPF的角平分线上(到角两边距离相等的点在这个角的平分线上)。
⑵连接OB、OD、OP,
∵OB=OD,PB=PD,PO=PO,
∴ΔPOB≌ΔPOD,
∴∠DPO=∠BPO,
又OM⊥AB,ON⊥CD,
∴AB=CD(相等的弦心距所对的弦相等)
追答
答:是一个等腰直角三角形。
证明:连结AM。
因为三角形ABC是等腰直角三角形,DF垂直于AB,DE垂直于AB,可以证明BF=FD=AE,又因为点M是BC之中点,可知MA=MB,且角B=角MAE=45度,所以可以证明三角形MBF全等于三角形MAE。(边角边)所以可得ME=mF,角BMF=角AME。因为有角AMF+角BMF=90度,所以角AMF+角AME=90度=角FME。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询