∫cos^4xdx
∫cos^4xdx=1/32sin4x+1/4sin2x+3/8x+C。(C为积分常数)
连续使用高中公式cos2x=2cos^2x-1达到降幂效果。
∫cos^4 xdx
=1/4∫(1+cos2x)^2dx(cos^4x=(cos^2x)^2=[(1+cos2x)/2]^2=(1+cos2x)^2/4)
=1/4∫(cos^2 2x+2cos2x+1)dx
=1/4(∫cos^2 2xdx+sin2x+x)
=1/4[1/2∫(1+cos4x)dx+sin2x+x]
=1/32sin4x+1/4sin2x+3/8x+C
扩展资料:
二倍角公式
sin2α=2sinαcosα
tan2α=2tanα/(1-tan^2(α))
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C