设函数f(x)=-x(x-a)2(x∈R),其中a∈R.(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方

设函数f(x)=-x(x-a)2(x∈R),其中a∈R.(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≠0时,求函数f(x)的极小值.... 设函数f(x)=-x(x-a)2(x∈R),其中a∈R.(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≠0时,求函数f(x)的极小值. 展开
 我来答
委婉还朴素灬小白杨6065
2014-12-11 · 超过41用户采纳过TA的回答
知道答主
回答量:96
采纳率:0%
帮助的人:120万
展开全部
(1)当a=1时,f(x)=-x(x-1)2=-x3+2x2-x,
得f(2)=-2,且f′(x)=-3x2+4x-1,f′(2)=-5.…2分
所以,曲线y=-x(x-1)2在点(2,-2)处的切线方程是y+2=-5(x-2),
整理得5x+y-8=0.…3分
(2)f(x)=-x(x-a)2=-x3+2ax2-a2x,
f′(x)=-3x2+4ax-a2=-(3x-a)(x-a).
令f′(x)=0,解得x=
a
3
或x=a.…6分
由于a≠0,以下分两种情况讨论.
①若a>0,当x变化时,f′(x)的正负如下表:
x(-∞,
a
3
a
3
a
3
,a
a(a,+∞)
f′(x)-0+0-
因此,函数f(x)在x=
a
3
处取得极小值f(
a
3
)
,且f(
a
3
)=-
4
27
a3
.…8分
②若a<0,当x变化时,f′(x)的正负如下表:
x(-∞,a)a(a,
a
3
a
3
a
3
,+∞
f′(x)-0+0-
因此,函数f(x)在x=a处取得极小值f(a),且f(a)=0.…10分.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式