如图,正方形ABCD的边长为4,以BC为直径作圆,过A点作圆的切线,交DC于E,切点为F.(1)求△ADE的面积;

如图,正方形ABCD的边长为4,以BC为直径作圆,过A点作圆的切线,交DC于E,切点为F.(1)求△ADE的面积;(2)求BF的长.... 如图,正方形ABCD的边长为4,以BC为直径作圆,过A点作圆的切线,交DC于E,切点为F.(1)求△ADE的面积; (2)求BF的长. 展开
 我来答
TA20458195812
2014-09-15 · 超过79用户采纳过TA的回答
知道答主
回答量:125
采纳率:100%
帮助的人:69万
展开全部
解:(1)∵AB⊥BC,
∴AB为圆O的切线,
又AE为圆O的切线,
∴AB=AF=4,
同理得到EF=EC,
设EF=EC=x,则有DE=DC-EC=4-x,AE=AF+EF=4+x,
在Rt△ADE中,利用勾股定理得:AE2=AD2+DE2,即(4+x)2=42+(4-x)2
解得:x=1,
∴DE=4-1=3,
则S△ADE=
1
2
AD?DE=6;

(2)连接OA,OF,
∵OB⊥AB,OF⊥AF,且OB=OF,
∴AO为∠BAF的平分线,
∵AB=AF,
∴AM⊥BF,M为BF的中点,
在Rt△ABO中,根据勾股定理得:OA=
AB2+OB2
=2
5

∵S△ABO=
1
2
AB?OB=
1
2
OA?BM,
∴BM=
4×2
2
5
=
4
5
5

则BF=2BM=
8
5
5
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式