设f(x)是定义在(0,+∞)上的函数,对定义域内的任意x,y都满足f(xy)=f(x)+f(y),且x>1时,f(
设f(x)是定义在(0,+∞)上的函数,对定义域内的任意x,y都满足f(xy)=f(x)+f(y),且x>1时,f(x)>0.(1)写出一个符合要求的函数,并猜想f(x)...
设f(x)是定义在(0,+∞)上的函数,对定义域内的任意x,y都满足f(xy)=f(x)+f(y),且x>1时,f(x)>0.(1)写出一个符合要求的函数,并猜想f(x)在(0,+∞)上的单调性;(2)若f(2)=1,解不等式f(x)+f(x-3)≤2.
展开
1个回答
展开全部
(1)y=logax(a>1,x>0),…(2分)f(x)在(0,+∞)上单调递增.…(3分)
(2)任取x1,x2∈(0,+∞),且x2<x1
由f(xy)=f(x)+f(y),得f(xy)-f(x)=f(y),令xy=x1,x=x2,则,∵x1>x2>0,∴
>1,∴f(x1)?f(x2)=f(
)>0,∴f(x1)>f(x2),故f(x)在(0,+∞)上单调递增.…(6分)
由f(xy)=f(x)+f(y),令x=y=2,得f(4)=f(2)+f(2)=2f(2)=2…(7分)∴f(x)+f(x-3)≤f(4),即f[x(x-3)]≤f(4),…(8分)
由f(x)在(0,+∞)上单调递增,得
,…(10分) 解得
,…(11分)
所以不等式的解集为{x|3<x≤4}.…(12分)
(2)任取x1,x2∈(0,+∞),且x2<x1
由f(xy)=f(x)+f(y),得f(xy)-f(x)=f(y),令xy=x1,x=x2,则,∵x1>x2>0,∴
x1 |
x2 |
x1 |
x2 |
由f(xy)=f(x)+f(y),令x=y=2,得f(4)=f(2)+f(2)=2f(2)=2…(7分)∴f(x)+f(x-3)≤f(4),即f[x(x-3)]≤f(4),…(8分)
由f(x)在(0,+∞)上单调递增,得
|
|
所以不等式的解集为{x|3<x≤4}.…(12分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询