已知抛物线y=x2+mx-2m2(m≠0).(1)求证:该抛物线与x轴有两个不同的交点;(2)过点P(0,n)作y轴的

已知抛物线y=x2+mx-2m2(m≠0).(1)求证:该抛物线与x轴有两个不同的交点;(2)过点P(0,n)作y轴的垂线交该抛物线于点A和点B(点A在点P的左边),是否... 已知抛物线y=x2+mx-2m2(m≠0).(1)求证:该抛物线与x轴有两个不同的交点;(2)过点P(0,n)作y轴的垂线交该抛物线于点A和点B(点A在点P的左边),是否存在实数m、n,使得AP=2PB?若存在,则求出m、n满足的条件;若不存在,请说明理由. 展开
 我来答
低调O小189
2014-11-06 · 超过65用户采纳过TA的回答
知道答主
回答量:124
采纳率:66%
帮助的人:59.3万
展开全部
解答:(1)证明:△=m2-4×1×(-2m2)=9m2
∵m≠0,∴△>0,
∴该抛物线与x轴有两个不同的交点;

(2)解:由题意易知:点A、B的坐标满足方程:x2+mx-2m2=n,即x2+mx-(2m2+n)=0
由于方程有两个不相等的实数根,
因此△>0,即m2-4×1×[-(2m2+n)]>0?9m2+4n>0,①
由求根公式可知两根为:xA
?m?
9m2+4n
2
xB
?m+
9m2+4n
2

AB=xB?xA
?m+
9m2+4n
2
?
?m?
9m2+4n
2
9m2+4n

PB=xB?xP
?m+
9m2+4n
2
?0=
?m+
9m2+4n
2

分两种情况讨论:
第一种:如图1,点A在点P左边,点B在点P的右边
∵AP=2PB
∴AB=3PB
9m2+4n
=3×
?m+
9m2+4n
2
?
9m2+4n
=3m
.②
∴m>0.③
由②式可解得n=0.④
第二种:如图2,点A、B都在点P左边
∵AP=2PB
∴AB=PB
9m2+4n
=0?
?m+
9m2+4n
2
?3
9m2+4n
=m
.⑤
∴m>0.⑥
由⑤式可解得n=-
20
9
m2.⑦
综合①③④⑥⑦可知,满足条件的点P存在,此时m、n应满足条件:m>0,n=0或n=-
20
9
m2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式