(2013?丰台区二模)已知:如图,直线PA交⊙O于A、B两点,AE是⊙O的直径,点C是⊙O上一点,且AC平分∠PAE

(2013?丰台区二模)已知:如图,直线PA交⊙O于A、B两点,AE是⊙O的直径,点C是⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA,垂足为点D.(1)求证:CD与... (2013?丰台区二模)已知:如图,直线PA交⊙O于A、B两点,AE是⊙O的直径,点C是⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA,垂足为点D.(1)求证:CD与⊙O相切;(2)若tan∠ACD=12,⊙O的直径为10,求AB的长. 展开
 我来答
149sVu
推荐于2016-11-17 · 超过85用户采纳过TA的回答
知道答主
回答量:125
采纳率:0%
帮助的人:168万
展开全部
(1)证明:连结OC,
∵点C在⊙O上,OA=OC,
∴∠OCA=∠OAC,
∵CD⊥PA,
∴∠CDA=90°,有∠CAD+∠DCA=90°,
∵AC平分∠PAE,
∴∠DAC=∠CAO,
∴∠DAC=∠OCA,
∴∠DCO=∠DCA+∠ACO=∠DCA+∠DAC=90°.
∵点C在⊙O上,OC为⊙O的半径,
∴CD为⊙O的切线.

(2)解:过点O作OG⊥AB于G,
∵∠OCD=90°,CD⊥PA,
∴四边形OCDG是矩形,
∴OG=CD,GD=OC,
∵⊙O的直径为10,
∴OA=OC=5,
∴DG=5,
∵tan∠ACD=
AD
CD
1
2
,设AD=x,CD=2x,则OG=2x,
∴AG=DG-AD=5-x,
在Rt△AGO中,由勾股定理知AG2+OG2=OA2
∴(5-x)2+(2x)2=25,
解得x1=2,x2=0(舍去),
∴由垂径定理得:AB=2AG=2×(5-2)=6.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式