已知二次函数f(x)=ax2+bx+c(a≠0)且满足f(-1)=0对任意实数x,都有f(x)-x≥0,并且当x∈(0,2)
已知二次函数f(x)=ax2+bx+c(a≠0)且满足f(-1)=0对任意实数x,都有f(x)-x≥0,并且当x∈(0,2)时,有f(x)≤(x+12)2(1)求f(1)...
已知二次函数f(x)=ax2+bx+c(a≠0)且满足f(-1)=0对任意实数x,都有f(x)-x≥0,并且当x∈(0,2)时,有f(x)≤(x+12)2(1)求f(1)的值;(2)证明:a>0、c>0;(3)当x∈[-1,1]时,g(x)=f(x)-mx(m∈R)是单调的,求证:m≤0或m≥1.
展开
1个回答
展开全部
(1)由条件可知x≤f(x)≤(
)2对任意实数x∈(0、2)恒成立,取x=1得1≤f(1)≤1,故f(1)=1.
(2)由f(-1)=0得a-b+c=0,故b=
,a+c=
,
由对任意实数x,都有f(x)-x≥0得ax2+(b-1)x+c≥0,
所以
,即
,即
故a>0,c>0
(3)由(2)可知f(x)=
x2+
x+
,g(x)=
x2
x+1 |
2 |
(2)由f(-1)=0得a-b+c=0,故b=
1 |
2 |
1 |
2 |
由对任意实数x,都有f(x)-x≥0得ax2+(b-1)x+c≥0,
所以
|
|
|
故a>0,c>0
(3)由(2)可知f(x)=
1 |
4 |
1 |
2 |
1 |
4 |
1 |
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询