已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求
已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB...
已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出相应的∠DOE的度数(不必写出过程).
展开
1个回答
展开全部
(1)如图,∠AOC=90°-∠BOC=20°,
∵OD、OE分别平分∠AOC和∠BOC,
∴∠COD=
∠AOC=10°,∠COE=
∠BOC=35°,
∴∠DOE=∠COD+∠COE=45°;
(2)∠DOE的大小不变,理由是:
∠DOE=∠COD+∠COE=
∠AOC+
∠COB=
(∠AOC+∠COB)=
∠AOB=45°;
(3)∠DOE的大小发生变化情况为,
如图3,则∠DOE为45°;如图4,则∠DOE为135°,
分两种情况:如图3所示,
∵OD、OE分别平分∠AOC和∠BOC,
∴∠COD=
∠AOC,∠COE=
∠BOC,
∴∠DOE=∠COD-∠COE=
(∠AOC-∠BOC)=45°;
如图4所示,∵OD、OE分别平分∠AOC和∠BOC,
∴∠COD=
∠AOC,∠COE=
∠BOC,
∴∠DOE=∠COD+∠COE=
(∠AOC+∠BOC)=
×270°=135°.
∵OD、OE分别平分∠AOC和∠BOC,
∴∠COD=
1 |
2 |
1 |
2 |
∴∠DOE=∠COD+∠COE=45°;
(2)∠DOE的大小不变,理由是:
∠DOE=∠COD+∠COE=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
(3)∠DOE的大小发生变化情况为,
如图3,则∠DOE为45°;如图4,则∠DOE为135°,
分两种情况:如图3所示,
∵OD、OE分别平分∠AOC和∠BOC,
∴∠COD=
1 |
2 |
1 |
2 |
∴∠DOE=∠COD-∠COE=
1 |
2 |
如图4所示,∵OD、OE分别平分∠AOC和∠BOC,
∴∠COD=
1 |
2 |
1 |
2 |
∴∠DOE=∠COD+∠COE=
1 |
2 |
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询