奇变偶不变 符号看象限什么意思
1.“奇变偶不变,符号看象限”是三角函数里关于诱导公式的一句口诀。
2.具体解释如下:
下面是16个常用的诱导公式
sin(90°-α)= cosα sin(90°+α)= cosα
cos(90°-α)= sinα cos(90°+α)= - sinα
sin(270°-α)= - cosα sin(270°+α)= - cosα
cos(270°-α)= - sinα cos(270°+α)= sinα
sin(180°-α)= sinα sin(180°+α)= - sinα
cos(180°-α)= - cosα cos(180°+α)= - cosα
sin(360°-α)= - sinα sin(360°+α)= sinα
cos(360°-α)= cosα cos(360°+α)= cosα
“奇变偶不变”的意思是:例如cos(270°-α)= - sinα中, 270°是90°的3(奇数)倍所以cos变为sin,即奇变;又sin(180°+α)= - sinα中, 180°是90°的2(偶数)倍所以sin还是sin,即偶不变。
“符号看象限”的意思是:通过公式左边的角度所落的象限决定公式右边是正还是是负。例如cos(270°-α)= - sinα中, 视α为锐角,270°-α是第三象限角,第三象限角的余弦为负,所以等式右边为负号。又如sin(180°+α)= - sinα 中, 视α为锐角,180°+α是第三象限角,第三象限角的正弦为负,所以等式右边有负号。注意:公式中α可以不是锐角,只是为了记住公式,视α为锐角。
另外这个口诀还能记住正切、余切、正割、余割的诱导公式,推导过程与上面的正弦、余弦相同。
扩展资料:
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
“奇变偶不变,符号看象限。”是数学中诱导公式的记忆口诀。
注:奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角)。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆:水平诱导名不变;符号看象限。
扩展资料:
诱导公式是指三角函数中,利用周期性将角度比较大的三角函数,转换为角度比较小的三角函数的公式。 诱导公式有六组,共54个。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.
这十二字口诀的意思就是说:
第一象限内任何一个角的三角函数值都是“+”;
第二象限内只有正弦和余割是“+”,其余全部是“-”;
第三象限内只有正切和余切是“+”,其余函数是“-”;
第四象限内只有正割和余弦是“+”,其余全部是“-”。
一全正,二正弦,三双切,四余弦。
参考链接:百度百科-诱导公式
1.“奇变偶不变,符号看象限”是三角函数里关于诱导公式的一句口诀。
2.具体解释如下:
下面是16个常用的诱导公式
sin(90°-α)= cosα sin(90°+α)= cosα
cos(90°-α)= sinα cos(90°+α)= - sinα
sin(270°-α)= - cosα sin(270°+α)= - cosα
cos(270°-α)= - sinα cos(270°+α)= sinα
sin(180°-α)= sinα sin(180°+α)= - sinα
cos(180°-α)= - cosα cos(180°+α)= - cosα
sin(360°-α)= - sinα sin(360°+α)= sinα
cos(360°-α)= cosα cos(360°+α)= cosα
“奇变偶不变”的意思是:例如cos(270°-α)= - sinα中, 270°是90°的3(奇数)倍所以cos变为sin,即奇变;又sin(180°+α)= - sinα中, 180°是90°的2(偶数)倍所以sin还是sin,即偶不变。
“符号看象限”的意思是:通过公式左边的角度所落的象限决定公式右边是正还是是负。例如cos(270°-α)= - sinα中, 视α为锐角,270°-α是第三象限角,第三象限角的余弦为负,所以等式右边为负号。又如sin(180°+α)= - sinα 中, 视α为锐角,180°+α是第三象限角,第三象限角的正弦为负,所以等式右边有负号。注意:公式中α可以不是锐角,只是为了记住公式,视α为锐角。
另外这个口诀还能记住正切、余切、正割、余割的诱导公式,推导过程与上面的正弦、余弦相同。
奇变偶不变:即:k为奇数时,结果是cos;
k为奇数时,结果仍是sin;
符号看象限:即:首先把a看做锐角,根据k值,看kπ/2±a在第几象限
在根据sin在该象限的符号确定±
对于cos(kπ/2±a) = 也是如此
如:cos(7π/2+a) = sina (奇变,7π/2+a在第四象限为正)
cos(7π/2-a) =-sina (奇变,7π/2-a在第三象限为负)
cos(6π/2-a) =-cosa (偶不变,3π-a在第二象限为负)