怎么写?求解!!!
2个回答
展开全部
∵EF∥AD∥BC
∴GE/GB=EF/BC HE/HA=EF/AD
∵AD=BC
∴GE/GB=HE/HA
∴GE/BE=HE/AE
又∵∠AEB=∠HEG
∴ΔAEB∽ΔHEG
∴∠ABE=∠HGE
∴GH∥AB
题型1:空间几何体的构造
例1.(1)(06北京理4)平面 的斜线 AB 交 于点 B,过定点 A 的动直线 与 AB 垂直,且交 于点 C,则动点C的轨迹是( )
A.一条直线 B.一个圆 C.一个椭圆 D.双曲线的一支
(2)(04天津文 8)如图,定点A和B都在平面 内,定点 C是 内异于A和B的动点,且 那么,动点在平面 内的轨迹是( )
A.一条线段,但要去掉两个点 B.一个圆,但要去掉两个点
C.一个椭圆,但要去掉两个点 D.半圆,但要去掉两个点
(3)正方体ABCD_A1B1C1D1的棱长为2,点M是BC的中点,点P是平面ABCD内的一个动点,且满足PM=2,P到直线A1D1的距离为 ,则点P的轨迹是[ ]
A.圆 B.双曲线 C.两个点 D.直线
解析:(1)设 与 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点 与 垂直所有直线都在这个平面内,故动点C都在这个平面与平面 的交线上,故选A。
(2)答案为B。
(3)解析: 点P到A1D1的距离为 ,则点P到AD的距离为1,满足此条件的P的轨迹是到直线AD的距离为1的两条平行直线,
又 , 满足此条件的P的轨迹是以M为圆心,半径为2的圆,这两种轨迹只有两个交点.
故点P的轨迹是两个点。选项为C。
∴GE/GB=EF/BC HE/HA=EF/AD
∵AD=BC
∴GE/GB=HE/HA
∴GE/BE=HE/AE
又∵∠AEB=∠HEG
∴ΔAEB∽ΔHEG
∴∠ABE=∠HGE
∴GH∥AB
题型1:空间几何体的构造
例1.(1)(06北京理4)平面 的斜线 AB 交 于点 B,过定点 A 的动直线 与 AB 垂直,且交 于点 C,则动点C的轨迹是( )
A.一条直线 B.一个圆 C.一个椭圆 D.双曲线的一支
(2)(04天津文 8)如图,定点A和B都在平面 内,定点 C是 内异于A和B的动点,且 那么,动点在平面 内的轨迹是( )
A.一条线段,但要去掉两个点 B.一个圆,但要去掉两个点
C.一个椭圆,但要去掉两个点 D.半圆,但要去掉两个点
(3)正方体ABCD_A1B1C1D1的棱长为2,点M是BC的中点,点P是平面ABCD内的一个动点,且满足PM=2,P到直线A1D1的距离为 ,则点P的轨迹是[ ]
A.圆 B.双曲线 C.两个点 D.直线
解析:(1)设 与 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点 与 垂直所有直线都在这个平面内,故动点C都在这个平面与平面 的交线上,故选A。
(2)答案为B。
(3)解析: 点P到A1D1的距离为 ,则点P到AD的距离为1,满足此条件的P的轨迹是到直线AD的距离为1的两条平行直线,
又 , 满足此条件的P的轨迹是以M为圆心,半径为2的圆,这两种轨迹只有两个交点.
故点P的轨迹是两个点。选项为C。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询