已知数列{an}满足a1=1,点(an,an+1)在直线y=2x+1上.(1)求数列{an}的通项公式;(2)若数列{bn}满足

已知数列{an}满足a1=1,点(an,an+1)在直线y=2x+1上.(1)求数列{an}的通项公式;(2)若数列{bn}满足b1=a1,bnan=1a1+1a2+…+... 已知数列{an}满足a1=1,点(an,an+1)在直线y=2x+1上.(1)求数列{an}的通项公式;(2)若数列{bn}满足b1=a1,bnan=1a1+1a2+…+1an?1(n≥2且n∈N*),求bn+1an-(bn+1)an+1的值;(3)对于(2)中的数列{bn},求证:(1+b1)(1+b2)…(1+bn)<103b1b2…bn(n∈N*). 展开
 我来答
唯爱一萌108455
推荐于2016-09-11 · TA获得超过454个赞
知道答主
回答量:127
采纳率:0%
帮助的人:65.1万
展开全部
(1)解:∵点(an,an+1)在直线y=2x+1上,
∴an+1+1=2(an+1)
∴{an+1}是以2为首项,2为公比的等比数列
∴an=2n-1;
(2)解:
bn
an
1
a1
+
1
a2
+…+
1
an?1
(n≥2,n∈N*)

bn+1
an+1
=
bn
an
+
1
an

∴bn+1an-(bn+1)an+1=0
n=1时,b2a1-(b1+1)a2=-3;
(3)证明:由(2)可知,
bn+1
bn+1
an
an+1
(n≥2),b2=a2
(1+
1
b1
)(1+
1
b2
)
(1+
1
bn
)
=
1
b1
?
b1+1
b2
?
b2+1
b3
?
bn+1
bn+1
?bn+1

=
1
b1
?
b1+1
b2
?
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消