已知数列{an}满足a1=1,点(an,an+1)在直线y=2x+1上.(1)求数列{an}的通项公式;(2)若数列{bn}满足
已知数列{an}满足a1=1,点(an,an+1)在直线y=2x+1上.(1)求数列{an}的通项公式;(2)若数列{bn}满足b1=a1,bnan=1a1+1a2+…+...
已知数列{an}满足a1=1,点(an,an+1)在直线y=2x+1上.(1)求数列{an}的通项公式;(2)若数列{bn}满足b1=a1,bnan=1a1+1a2+…+1an?1(n≥2且n∈N*),求bn+1an-(bn+1)an+1的值;(3)对于(2)中的数列{bn},求证:(1+b1)(1+b2)…(1+bn)<103b1b2…bn(n∈N*).
展开
1个回答
展开全部
(1)解:∵点(an,an+1)在直线y=2x+1上,
∴an+1+1=2(an+1)
∴{an+1}是以2为首项,2为公比的等比数列
∴an=2n-1;
(2)解:
=
+
+…+
(n≥2,n∈N*)
∴
=
+
∴bn+1an-(bn+1)an+1=0
n=1时,b2a1-(b1+1)a2=-3;
(3)证明:由(2)可知,
=
(n≥2),b2=a2
∴(1+
)(1+
)…(1+
)=
?
?
?…
?bn+1
=
?
?
∴an+1+1=2(an+1)
∴{an+1}是以2为首项,2为公比的等比数列
∴an=2n-1;
(2)解:
bn |
an |
1 |
a1 |
1 |
a2 |
1 |
an?1 |
∴
bn+1 |
an+1 |
bn |
an |
1 |
an |
∴bn+1an-(bn+1)an+1=0
n=1时,b2a1-(b1+1)a2=-3;
(3)证明:由(2)可知,
bn+1 |
bn+1 |
an |
an+1 |
∴(1+
1 |
b1 |
1 |
b2 |
1 |
bn |
1 |
b1 |
b1+1 |
b2 |
b2+1 |
b3 |
bn+1 |
bn+1 |
=
1 |
b1 |
b1+1 |
b2 |