如图,E,F是平行四边形ABCD对角线上两点,AE=CF.求证:(1)BE=DF;(2)四边形BEDF是平行四边形
如图,E,F是平行四边形ABCD对角线上两点,AE=CF.求证:(1)BE=DF;(2)四边形BEDF是平行四边形....
如图,E,F是平行四边形ABCD对角线上两点,AE=CF.求证:(1)BE=DF;(2)四边形BEDF是平行四边形.
展开
展开全部
解答:证明:(1)∵四边形ABCD是平行四边形(已知),
∴AB=CD,AB∥CD(平行四边形的对边平行且相等),
∴∠BAC=∠DCA(两直线平行,内错角相等),即∠BAE=∠DCF.
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS),
∴BE=DF(全等三角形的对应边相等);
(2)∵△ABE≌△CDF,
∴∠BEA=∠CFD(全等三角形的对应角相等).
∵∠BEF=180°-∠BEA,∠AFD=180°-∠CFD,
∴∠BEF=∠AFD,
∴BE∥DF(内错角相等,两直线平行);
又由(1)知,BE=DF,
∴四边形BEDF是平行四边形(对边平行且相等的四边形是平行四边形).
∴AB=CD,AB∥CD(平行四边形的对边平行且相等),
∴∠BAC=∠DCA(两直线平行,内错角相等),即∠BAE=∠DCF.
在△ABE和△CDF中,
|
∴△ABE≌△CDF(SAS),
∴BE=DF(全等三角形的对应边相等);
(2)∵△ABE≌△CDF,
∴∠BEA=∠CFD(全等三角形的对应角相等).
∵∠BEF=180°-∠BEA,∠AFD=180°-∠CFD,
∴∠BEF=∠AFD,
∴BE∥DF(内错角相等,两直线平行);
又由(1)知,BE=DF,
∴四边形BEDF是平行四边形(对边平行且相等的四边形是平行四边形).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询