如图,二次函数y=ax2+bx+c的图象交x轴于A(-1,0),B(2,0),交y轴于C(0,-2),过A,C画直线.(1)

如图,二次函数y=ax2+bx+c的图象交x轴于A(-1,0),B(2,0),交y轴于C(0,-2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,... 如图,二次函数y=ax2+bx+c的图象交x轴于A(-1,0),B(2,0),交y轴于C(0,-2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为455,求点M的坐标. 展开
 我来答
手机用户31927
推荐于2016-11-25 · TA获得超过110个赞
知道答主
回答量:118
采纳率:0%
帮助的人:153万
展开全部
(1)设该二次函数的解析式为:y=a(x+1)(x-2),
将x=0,y=-2代入,得-2=a(0+1)(0-2),
解得a=1,
∴抛物线的解析式为y=(x+1)(x-2),
即y=x2-x-2;

(2)设OP=x,则PC=PA=x+1,
在Rt△POC中,由勾股定理,得x2+22=(x+1)2
解得,x=
3
2

即OP=
3
2


(3)①∵△CHM∽△AOC,
∴∠MCH=∠CAO,
(i)如图1,当H在点C下方时,
∵∠OAC+∠OCA=90°,∠MCH=∠OAC
∴∠OCA+∠MCH=90°
∴∠OCM=90°=∠AOC
∴CM∥x轴
∴yM=-2,
∴x2-x-2=-2,
解得x1=0(舍去),x2=1,
∴M(1,-2),
(ii)如图1,当H在点C上方时,
∵∠MCH=∠CAO,
∴PA=PC,由(2)得,M′为直线CP与抛物线的另一交点,
设直线CM的解析式为y=kx-2,
把P(
3
2
,0)的坐标代入,得
3
2
k-2=0,
解得k=
4
3

∴y=
4
3
x-2,
4
3
x-2=x2-x-2,
解得x1=0(舍去),x2=
7
3

此时y=
4
3
×
7
3
-2=
10
9

∴M′(
7
3
10
9
),

②在x轴上取一点D,如图(备用图),过点D作DE⊥AC于点E,使DE=
4
5
5

在Rt△AOC中,AC=
AO2+CO2
=
12+2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消