已知函数f(x)=㏒ax(a>0且a≠1),若数列2,f(a1),f(a2),…,f(an),2n+4(n∈N*)成等差数列

已知函数f(x)=㏒ax(a>0且a≠1),若数列2,f(a1),f(a2),…,f(an),2n+4(n∈N*)成等差数列(1)求数列{an}的通项an;(2)令bn=... 已知函数f(x)=㏒ax(a>0且a≠1),若数列2,f(a1),f(a2),…,f(an),2n+4(n∈N*)成等差数列(1)求数列{a n}的通项a n;(2)令b n=anf(an),当a>1时,判断数列{bn}的单调性并证明你的结论. 展开
 我来答
事珺个8456
2014-09-14 · 超过56用户采纳过TA的回答
知道答主
回答量:109
采纳率:0%
帮助的人:105万
展开全部
(1)解:∵数列2,f(a 1),f(a 2),…,f(a n),2n+4(n∈N*)成等差数列
∴2n+4=2+(n+1)d,∴d=2,
∴f(an)=2+2n=logaan
∴an=a2n+2
(2)数列{b n}单调递增
证明:∵b n=anf(an),
∴bn=(2n+2)a2n+2
则bn+1=(2n+4)a2n+4
∴bn+1-bn=(2n+4)a2n+4-(2n+2)a2n+2=a2n+2[(2n+4)a2-(2n+2)]
∵a>1
∴a2>1
∴(2n+4)a2-(2n+2)>(2n+4)-(2n+2)=2>0
∴bn+1-bn>0即数列{b n}单调递增.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式