已知数列{an}的前n项和Sn=10n-n2,bn=|an|,则数列{bn}的前n项和Tn=______
已知数列{an}的前n项和Sn=10n-n2,bn=|an|,则数列{bn}的前n项和Tn=______....
已知数列{an}的前n项和Sn=10n-n2,bn=|an|,则数列{bn}的前n项和Tn=______.
展开
1个回答
展开全部
∵Sn=10n-n2,
∴Sn-1=10(n-1)-(n-1)2,
两式相减,得an=11-2n(n≥2,n∈N),
当n=1时,a1=11-2×1=9=S1,
∴数列{an}的通项公式为an=-2n+11(n∈N*),
∴当n≤5时,an>0,bn=an;
当n≥6时,an<0,bn=-an;
∴当n≤5时,Tn=10n-n2;
当n≥6时,Tn=2S5-Sn=n2-10n+50.
综上,Tn=
.
故答案为:
.
∴Sn-1=10(n-1)-(n-1)2,
两式相减,得an=11-2n(n≥2,n∈N),
当n=1时,a1=11-2×1=9=S1,
∴数列{an}的通项公式为an=-2n+11(n∈N*),
∴当n≤5时,an>0,bn=an;
当n≥6时,an<0,bn=-an;
∴当n≤5时,Tn=10n-n2;
当n≥6时,Tn=2S5-Sn=n2-10n+50.
综上,Tn=
|
故答案为:
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询