线性代数,这两题怎么做?

 我来答
newmanhero
2015-05-16 · TA获得超过7770个赞
知道大有可为答主
回答量:1850
采纳率:100%
帮助的人:940万
展开全部
A为m×n矩阵,则n表示变量数,即n元方程组。

Ax=0,仅有零解,即n个变量,存在n个无关方程。

那么r(A) = n,即A的列向量线性无关。

选A

α1,α2,β线性无关,则α2,β也线性无关。
α2,α3,β线性相关,由根据α2,β线性无关,则α3可由α2,β线性表示,且表示唯一。
那么α3就一定可以α1,α2,β线性表示,即非齐次线性方程组x1α1+x2α2+x3β=α3一定有解。

选D

newmanhero 2015年5月16日19:54:50

希望对你有所帮助,望采纳。
X先森说

2015-10-31 · TA获得超过1.4万个赞
知道大有可为答主
回答量:6377
采纳率:82%
帮助的人:694万
展开全部
【分析】
逆矩阵定义:若n阶矩阵A,B满足AB=BA=E,则称A可逆,A的逆矩阵为B。

【解答】
A³-A²+3A=0,
A²(E-A)+3(E-A)=3E,
(A²+3)(E-A) = 3E
E-A满足可逆定义,它的逆矩阵为(A²+3)/3

【评注】
定理:若A为n阶矩阵,有AB=E,那么一定有BA=E。

所以当我们有AB=E时,就可以直接利用逆矩阵定义。而不需要再判定BA=E。
对于这种抽象型矩阵,可以考虑用定义来求解。
如果是具体型矩阵,就可以用初等变换来求解。

线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式