如图,已知抛物线y=ax2+bx+c与x轴相交于A(-2,0),B(4,0)两点,且经过点E(2,
如图,已知抛物线y=ax2+bx+c与x轴相交于A(-2,0),B(4,0)两点,且经过点E(2,4)...
如图,已知抛物线y=ax2+bx+c与x轴相交于A(-2,0),B(4,0)两点,且经过点E(2,4)
展开
1个回答
展开全部
(1)
过(-2, 0), (4, 0), 则可表达为y = a(x + 2)(x - 4)
过(2, 4): -8a = 4, a = -1/2
y = (-1/2)(x + 2)(x - 4)
C(0, 4)
(3)
对称轴:x = (-2 + 4)/2 = 1
P(1, p)
C, E的纵坐标相同,则关于对称轴对称。AE与对称轴的交点即为P(AC固定,只需P与A和C的距离之和最小即可, AE与对称性交于P,令CE与对称轴的交点为F,CPF和EPF全等,PE= PC;又两点间直线距离最短).
AE: (y - 0)/(4 - 0) = (x + 2)/(2 + 2), y = x + 2
P(1, 3)
(4)
B关于对称轴的对称点为A,AC的方程为: x/(-2) + y/4 = 1, y = 2x + 4
AC与对称轴的交点即为Q (http://zuoye.baidu.com/question/79bc1318fb4c41a67508f1a084918610.html)
x = 1, y = 6
Q(1, 6)
过(-2, 0), (4, 0), 则可表达为y = a(x + 2)(x - 4)
过(2, 4): -8a = 4, a = -1/2
y = (-1/2)(x + 2)(x - 4)
C(0, 4)
(3)
对称轴:x = (-2 + 4)/2 = 1
P(1, p)
C, E的纵坐标相同,则关于对称轴对称。AE与对称轴的交点即为P(AC固定,只需P与A和C的距离之和最小即可, AE与对称性交于P,令CE与对称轴的交点为F,CPF和EPF全等,PE= PC;又两点间直线距离最短).
AE: (y - 0)/(4 - 0) = (x + 2)/(2 + 2), y = x + 2
P(1, 3)
(4)
B关于对称轴的对称点为A,AC的方程为: x/(-2) + y/4 = 1, y = 2x + 4
AC与对称轴的交点即为Q (http://zuoye.baidu.com/question/79bc1318fb4c41a67508f1a084918610.html)
x = 1, y = 6
Q(1, 6)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询